Advertisement

Soviet Powder Metallurgy and Metal Ceramics

, Volume 9, Issue 8, pp 645–658 | Cite as

Kinetics of external dissolution of metals in metallic melts. (Review)

  • V. N. Eremenko
  • Ya. V. Natanzon
Test Methods and Properties of Materials
  • 95 Downloads

Conclusions

Dissolution rate under diffusion conditions is usually controlled by three parameters, D, δ, and cm. Since the dependence of D and δ values on the individual properties of metals (D ≈ 10−5 cm2/sec, δ≈ 10−3 cm) is slight,dissolution rate under diffusion conditions is determined chiefly by cm, which thus constitutes the principal criterion governing the choice of a metal compatible with any given melt. Dissolution under kinetic conditions does not appear to be typical of metals, since even tungsten, which has the highest crystal lattice energy of all metals [62], dissolves under diffusion conditions [19, 20, 63–66].

It thus follows that detailed researches into the dissolution kinetics of metals in metallic melts are hardly likely to reveal any new corrosion-resistant metallic materials. The existing liquid-metal corrosion inhibitors are refractory compounds such as nitrides or carbides [67]. This does not mean, of course, that investigations into the dissolution kinetics of solid metals in metallic melts serve no useful purpose, since they are concerned not only with corrosion, but also with a number of other processes referred to in the introduction to this survey.

Keywords

Carbide Tungsten Nitrides Crystal Lattice Dissolution Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. D. Manly, Corrosion,12, No. 7, 46 (1956).Google Scholar
  2. 2.
    D. H. Kerridge, J. Inst. Metals,88, 74 (1959–1960).Google Scholar
  3. 3.
    H. M. Finnitston, Some Studies of Corrosion in Liquid Metals, Australian Atomic Energy Symposium, Australian Atomic Energy Commission Research Establishment, Melbourne, April 3, 1958, p. 189.Google Scholar
  4. 4.
    V. I. Nikitin, Izv. Akad. Nauk SSSR, Met. i Gornoe Delo, No. 6, 185 (1963).Google Scholar
  5. 5.
    V. I. Nikitin, Zh. Prikl. Khim.,36, No. 10, 2192 (1963).Google Scholar
  6. 6.
    L. P. Skolnick, in; Kinetics of High-Temperature Processes (ed. W. D. Kingery), Technology Press of Massachusetts Institute of Technology, New York-London (1959), p. 92.Google Scholar
  7. 7.
    N. F. Lashko and S. V. Lashko, Avtomat. Svarka, No. 6, 30 (1963).Google Scholar
  8. 8.
    C. M. Craighead, E. W. Cawthorne, and R. I. Jaffee, Trans. AIME,203, 81 (1955).Google Scholar
  9. 9.
    V. M. Novakovskii and S. N. Fishman, Tr. Ural'sk. Nauchn.-Issled. Inst., Goskhimizdat (1961), p. 71.Google Scholar
  10. 10.
    L. A. Poluboyartseva, P. I. Zarubin, and V. M. Novakovskii, Zh. Prikl. Khim.,36, No. 6, 1264 (1963).Google Scholar
  11. 11.
    L. F. Epstein, Transactions of an International Conference on Peaceful Uses of Atomic Energy, Geneva, August 8–20, 1955, Vol. 9, Technology of Reactor Materials and Chemical Treatment of Nuclear Fuel [Russian translation], GNTI Khimicheskoi Literatury, Leningrad (1958), P/119 (USA), p. 380.Google Scholar
  12. 12.
    L. F. Epstein, Fluid Handling,2, 49 (1956).Google Scholar
  13. 13.
    E. A. Moelwyn-Hughes, The Kinetics of Reactions in Solution, 2nd ed., Clarendon Press (1947), p. 373.Google Scholar
  14. 14.
    G. Buckley, Crystal Growth [Russian translation], IL, Moscow (1954), p. 223.Google Scholar
  15. 15.
    J. R. Weeks and D. H. Gurinski, in: Liquid Metals and Their Solidification [Russian translation], Metallurgizdat (1962), p. 126.Google Scholar
  16. 16.
    F. W. Hirzner and D. A. Stevenson, J. Phys. Chem.,67, No. 11, 2424 (1963).Google Scholar
  17. 17.
    D. A. Stevenson and J. Wulff, Trans. AIME,221, No. 2, 279 (1961).Google Scholar
  18. 18.
    V. N. Eremenko, Ya. V. Natanzon, and V. R. Ryabov, Fiz.-Khim. Mekhan. Materialov,4, No. 6, 665 (1968).Google Scholar
  19. 19.
    P. M. Shurygin and V. D. Shantarin, Izv. Vysshikh Uchebn. Zavedenii, Chernaya Met., No. 10, 5 (1963).Google Scholar
  20. 20.
    P. M. Shurygin and V. D. Shantarin, in: Experimental Techniques and Methods of High-Temperature Measurements [in Russian], Izd-vo Nauka, Moscow (1966), p. 187.Google Scholar
  21. 21.
    R. L. Myuller, Zh. Fiz. Khim.,7, No. 3, 388 (1936).Google Scholar
  22. 22.
    R. L. Myuller and E. Ya. Afanas'eva-Potepun, Zh. Neorgan. Khim.,2, No. 6, 1306 (1957).Google Scholar
  23. 23.
    R. L. Myuller, Z. U. Burisova, and N. I. Grebenshchikov, Zh. Prikl. Khim.,34, No. 3, 533 (1961).Google Scholar
  24. 24.
    A. A. Ravdel' and G. N. Gorelik, Zh. Prikl. Khim.,37, No. 2, 275 (1964).Google Scholar
  25. 25.
    L. Bass, Nature,198, No. 4884, 982 (1963).Google Scholar
  26. 26.
    D. P. Gregory and A. C. Riddiford, J. Chem. Soc., No. 10, 731, 3756 (1956).Google Scholar
  27. 27.
    L. Prandtl, Hydroaeromechanics [Russian translation], IL, Moscow (1949).Google Scholar
  28. 28.
    V. G. Levich, Zh. Fiz. Khim.,18, No. 9, 335 (1944).Google Scholar
  29. 29.
    V. G. Levich, Zh. Fiz. Khim.,22, No. 5, 575 (1948).Google Scholar
  30. 30.
    V. G. Levich, Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  31. 31.
    W. Jost, Diffusion in Solids, Liquids, and Gases, Academic Press, New York (1952).Google Scholar
  32. 32.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Izd-vo Nauka, Moscow (1967).Google Scholar
  33. 33.
    J. Neuman, J. Phys. Chem.,70, No. 4, 1327 (1966).Google Scholar
  34. 34.
    M. Kh. Kishinevskii and T. B. Denisova, Zh. Prikl. Khim.,37, No. 7, 1544 (1964).Google Scholar
  35. 35.
    V. N. Eremenko, Ya. V. Natanzon, and O. F. Galadzhii, Fiz.-Khim. Mekhan. Materialov,3, No. 2, 134 (1967).Google Scholar
  36. 36.
    L. G. Loitsyanskii, The Laminar Boundary Layer [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  37. 37.
    Ya. V. Durdin and Z. U. Dukhnyakova, Collection of Papers on General Chemistry [in Russian], Vol. 1, Izd-vo AN SSSR (1953), p. 163.Google Scholar
  38. 38.
    N. Gregory, J. T. Stuart, and W. S. Walker, Phil. Trans. Roy. Soc., Ser. A,248, No. 943, 155 (1955).Google Scholar
  39. 39.
    V. N. Eremenko and Ya. V. Natanzon, Zh. Fiz. Khim.,42, No. 2, 398 (1968).Google Scholar
  40. 40.
    R. G. Ward and J. B. Taylor, J. Inst. Metals,85, No. 4, 145 (1956–1957).Google Scholar
  41. 41.
    J. M. Lommel and B. Chalmers, Trans. AIME,215, 499 (1959).Google Scholar
  42. 42.
    S. Minowa, M. Kosaka, et al., J. Iron Steel Inst. Japan,49, No. 19, 1596 (1963).Google Scholar
  43. 43.
    M. Kosaka, M. Mizuto, et al., Rept. Govt. Ind. Res. Inst., Nagoya,13, No. 4, 135 (1964).Google Scholar
  44. 44.
    B. Minuschkin, Solution Rates and Equilibrium Solubility of Nickel and Iron in Liquid Lithium, Nuclear Development Corp. of America, June 30, 1961, NDA-2141-1, 35 pp.Google Scholar
  45. 45.
    R. G. Ward and J. B. Taylor, J. Inst. Metals,86, No. 1, 36 (1957–1958).Google Scholar
  46. 46.
    R. G. Ward and J. B. Taylor, J. Brit. Nucl. Energy Conf.,3, No. 2, 89 (1958).Google Scholar
  47. 47.
    V. N. Eremenko, Ya. V. Natanzon, and V. R. Ryabov, Fiz.-Khim. Mekhan. Materialov,4, No. 3, 286 (1968).Google Scholar
  48. 48.
    T. F. Kassner, J. Electrochem. Soc.,114, No. 7, 689 (1967).Google Scholar
  49. 49.
    J. B. Darby, D. B. Jugle, and O. J. Kleppa, Trans. AIME,227, No. 1, 179 (1963).Google Scholar
  50. 50.
    M. Miyake, J. Japan Inst. Metals,28, No. 3, 111 (1964).Google Scholar
  51. 51.
    V. N. Eremenko and Ya. V. Natanzon, Fiz.-Khim. Mekhan. Materialov,2, No. 5, 574 (1966).Google Scholar
  52. 52.
    T. Sano, M. Miyake, and T. Konishi, J. Japan Inst. Metals,24, No. 7, 452 (1960).Google Scholar
  53. 53.
    M. Miyake, T. Konishi, and T. Sano, Technol. Rept. Osaka Univ.,10, No. 405, 453 (1960).Google Scholar
  54. 54.
    T. Sano, M. Miyake, and T. Konishi, Technol. Rept. Osaka Univ.,10, No. 437, 815 (1960).Google Scholar
  55. 55.
    G. Segre, Dissolution Rate of Uranium in Liquid Metals, Comitato Nazionale per le Richerche Nucleari, Centro di Studi Nucleari di Ispra, June, 1959, CNI-16, 8 pp.Google Scholar
  56. 56.
    A. A. Vertman and A. M. Yakobson, Abstracts of Papers to a Symposium on the Properties of Metallic Melts [in Russian], Izd-vo AN SSSR, Moscow (1967), p. 128.Google Scholar
  57. 57.
    P. M. Shurygin and V. D. Shantarin, Izv. Vysshikh Uchebn. Zavedenii, Tsvetn. Met., No. 4, 58 (1963).Google Scholar
  58. 58.
    J. A. R. Bennet and J. B. Lewis, J. Chem. Phys.,55, No. 2, 83 (1958).Google Scholar
  59. 59.
    M. Kosaka and S. Minowa, J. Iron Steel Inst. Japan,52, No. 12, 1748 (1966).Google Scholar
  60. 60.
    M. Miyake and T. Sano, J. Japan Inst. Metals,26, No. 6, 386 (1962).Google Scholar
  61. 61.
    J. K. Jackson and R. E. Grace, in: Physical Chemistry of Process Metallurgy, Metallurgical Society Conference, Interscience, New York, Vol. 7, Part 1 (1961), p. 633.Google Scholar
  62. 62.
    G. V. Samsonov (editor), Physicochemical Properties of the Elements [in Russian], Izd-vo Naukova Dumka, Kiev (1965).Google Scholar
  63. 63.
    P. M. Shurygin and V. D. Shantarin, Sb. Nauchn. Tr. Ural'sk. Politekhn. Inst., No. 126, Metallurgizdat (1963), p. 73.Google Scholar
  64. 64.
    P. M. Shuyrgin and V. D. Shantarin, Izv. Akad. Nauk SSSR, Met. i Gornoe Delo, No. 2, 38 (1964).Google Scholar
  65. 65.
    P. M. Shurygin and V. D. Shantarin, in; Theory and Practice of Intensification of the Converter and Open-Hearth Processes [in Russian], Izd-vo Metallurgiya, Moscow (1965), p. 64.Google Scholar
  66. 66.
    P. M. Shurygin and V. D. Shantarin, Fiz. Metal. i Metalloved.,17, No. 3, 471 (1964).Google Scholar
  67. 67.
    O. F. Kammerer, J. R. Sadofsky, et al., Trans. AIME,212, No. 1, 20 (1958).Google Scholar
  68. 68.
    G. H. Holden, Dissolution Kinetics of Zirconium in Liquid Uranium, Argonne National Laboratory, ANL-6167 (1960); G. H. Holden, Diffusion-Controlled Dissolution of Zirconium in Liquid Uranium at Gradually Rising Temperature, Argonne National Laboratory, ANL-6294 (1961).Google Scholar
  69. 69.
    L. W. Graham and G. W. Wilson, “Investigation of the rate of dissolution of iron from several ferritic steels in liquid bismuth,” J. Iron Steel Inst.,193, No. 10, 103 (1959).Google Scholar
  70. 70.
    I. A. Evtyukhina and L. L. Kunin, “Measurement of dissolution rate under forced convection conditions,” Abstracts of Papers to the Symposium on the Properties of Metallic Melts [in Russian], Izd-vo AN SSSR, Moscow (1967), p. 48.Google Scholar
  71. 71.
    V. V. Dymov and I. A. Evtyukhina, “An apparatus for the measurement of dissolution rate in metallurgical melts, theory of metallurgical processes,” Sb. Tr. TsNIIChM, No. 56, Izd-vo “Metallurgiya,” Moscow (1967), p. 53.Google Scholar
  72. 72.
    L. I. Krupman and V. I. Yavoiskii, “Dissolution kinetics of ferroalloys in the steel-pouring ladle,” Izv. Vysshikh Uchebn. Zavedenii, Chernaya Met., No. 9, 35 (1964).Google Scholar
  73. 73.
    A. K. Covington, J. D. Baird, and A. A. Woolf, “Isothermal transport of aluminum to molybdenum in liquid metals,” J. Nucl. Energy, A/B,16, No. 7, 355 (1962).Google Scholar
  74. 74.
    R. D. Pehlke, P. D. Goodell, and R. W. Dunlap, “Dissolution kinetics of steel in liquid iron,” Trans. AIME,233, No. 7, 1420 (1965).Google Scholar
  75. 75.
    M. Takemura, “Corrosion of solid copper in liquid tin,” Science Rept. Kanazawa Univ.,8, No. 1, 116 (1962).Google Scholar
  76. 76.
    J. D. Harrison and C. Wagner, “Corrosion of solid alloys in liquid metals and molten salts,” Acta Met.,7, No. 11, 722 (1959).Google Scholar
  77. 77.
    P. M. Shurygin and V. D. Shantarin, “Diffusion of metals in liquid copper,” Fiz. Metal. i Metalloved.,16, No. 5, 731 (1963).Google Scholar
  78. 78.
    V. D. Shantarin, P. M. Shurygin, and V. V. Utochkin, “Dissolution kinetics of niobium in iron-carbon melts,” Izv. Akad. Nauk SSSR, Metally, No. 3, 31 (1966).Google Scholar
  79. 79.
    M. Miyake, “Dissolution of solid nickel and copper in liquid copper-bismuth and nickel-bismuth solutions,” J. Japan Inst. Metals,28, No. 3, 116 (1964).Google Scholar
  80. 80.
    M. Miyake, M. Iseki, and T. Sano, “Dissolution of copper-nickel alloys in liquid bismuth under static conditions,” J. Japan Inst. Metals,29, No. 10, 935 (1965).Google Scholar
  81. 81.
    M. Miyake and T. Sano, “Dissolution of copper-nickel alloys in liquid bismuth under dynamic conditions,” J. Japan Inst. Metals,29, No. 12, 1160 (1965).Google Scholar
  82. 82.
    S. Minowa and M. Kosaka, “Dissolution rate of chromium steel in a liquid aluminum alloy,” J. Iron Steel Inst. Japan,50, No. 1, 56 (1964).Google Scholar
  83. 83.
    S. Minowa, M. Kosaka, and M. Mizuto, “Dissolution rate of steel in molten metals,” J. Iron Steel Inst. Japan,50, No. 4, 644 (1964).Google Scholar
  84. 84.
    M. Kosaka and S. Minowa, “Effect of agitation on the dissolution rate of steel in liquid aluminum or zinc,” J. Iron Steel Inst. Japan,51, No. 2, 218 (1965); Rept. Govt. Ind. Res. Inst. Nagoya,16, No. 8, 250 (1967).Google Scholar
  85. 85.
    S. Minowa and M. Kosaka, “Rate of the reaction at the interface between iron and liquid aluminum,” J. Iron Steel Inst. Japan,51, No. 5, 1089 (1965).Google Scholar
  86. 86.
    M. Kosaka, M. Kato, et al., “Diffusion of iron and dissolution rate of steel in liquid zinc,” Rept. Govt. Ind. Res. Inst. Nagoya,14, No. 5, 171 (1965).Google Scholar
  87. 87.
    M. Kosaka and S. Minowa, “Mass transport from the surface of a stationary steel cylinder into liquid aluminum or zinc,” J. Iron Steel Inst. Japan,52, No. 4, 539 (1966).Google Scholar
  88. 88.
    M. Kosaka, M. Kato, and S. Minowa, “Interfacial reaction between steel and liquid aluminum or zinc,” Rept. Govt. Ind. Res. Inst. Nagoya,16, No. 9, 273 (1967).Google Scholar
  89. 89.
    M. Kosaka and S. Minowa, “Dissolution of steel cylinders in liquid alloys,” J. Iron Steel Inst. Japan, 53, No. 8, 983 (1967).Google Scholar

Copyright information

© Consultants Bureau 1970

Authors and Affiliations

  • V. N. Eremenko
    • 1
  • Ya. V. Natanzon
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations