Soviet Powder Metallurgy and Metal Ceramics

, Volume 8, Issue 12, pp 1002–1005 | Cite as

Structural stability of reinforced nickel-base composite materials

  • I. N. Frantsevich
  • D. M. Karpinos
  • V. A. Bespyatyi
Test Methods and Properties of Materials
  • 22 Downloads

Conclusions

  1. 1.

    Stress-rupture tests were carried out on reinforced specimens of composite materials consisting of an alloyed matrix and tungsten or molybdenum fibers at temperatures of 900 and 950°C.

     
  2. 2.

    A technique is proposed for studying the character of rupture of composite materials, consisting in dissolving the specimen matrix after testing and grading the fiber fragments by length. The most frequently encountered fiber-fragment length is approximately equal to the critical length.

     
  3. 3.

    The character of rupture of composite materials in long-time tests at elevated temperatures is examined.

     
  4. 4.

    On the basis of a metallographic analysis of the interfacial zone in the composite materials tested, it is concluded that a stable reinforced materials could be produced by using mutually saturated components.

     

Keywords

Tungsten Molybdenum Elevated Temperature Composite Material Structural Stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. H. Cottrell, in: Mechanical Properties of New Materials [Russian translation], Izd-vo “Mir,” Moscow (1966).Google Scholar
  2. 2.
    W. Sutton and J. Chorne, in: Fiber Composite Materials [Russian translation], Izd-vo “Mir,” Moscow (1967).Google Scholar
  3. 3.
    N. M. Parikh, in: Fiber Composite Materials [Russian translation], Izd-vo “Mir,” Moscow (1967).Google Scholar
  4. 4.
    D. Cratchley, Met. Rev.,10, No. 37, 79 (1965).Google Scholar
  5. 5.
    L. A. Oding and I. M. Kop'ev, in: Investigations of High-Strength Alloys and Crystal Whiskers [in Russian], Izd-vo “Mir,” Moscow (1963).Google Scholar
  6. 6.
    S. S. Brenner, J. Metals,14, No. 11, 889 (1962).Google Scholar
  7. 7.
    A. Kelly and G. J. Davies, Met. Rev.,10, No. 37, 1 (1965).Google Scholar
  8. 8.
    D. Z. McDanels and R. W. Sech, Metal Progr.,78, No. 6, 118 (1960).Google Scholar
  9. 9.
    A. V. Dean, J. Inst. Metals,95, No. 3, 79 (1967).Google Scholar
  10. 10.
    E. G. Ellison and B. Harris, Appl. Materials Res.,5, No. 1, 33 (1966).Google Scholar
  11. 11.
    Metals. Mechanical and Technological Test Procedures [in Russian], Standartgiz (1963).Google Scholar
  12. 12.
    N. D. Sazonova, Creep and Stress-Rupture Testing of Heat-Resisting Materials [in Russian], Izd-vo “Mashinostroenie,” Moscow (1965).Google Scholar
  13. 13.
    I. N. Frantsevich and E. B. Boiko, Poroshkovaya Met., No. 2 (1963).Google Scholar
  14. 14.
    I. N. Frantsevich and O. K. Teodorovich, Transactions of an Academy of Sciences of the USSR Conference on Contacts [in Russian], Izd-vo AN SSSR (1957).Google Scholar
  15. 15.
    I. N. Frantsevich and O. K. Teodorovich, Powder Metallurgy and Strength of Materials Topics [in Russian], Vol. 2 (1955).Google Scholar

Copyright information

© Consultants Bureau, a division of Plenum Publishing Corporation 1970

Authors and Affiliations

  • I. N. Frantsevich
    • 1
  • D. M. Karpinos
    • 1
  • V. A. Bespyatyi
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations