Bulletin of Experimental Biology and Medicine

, Volume 86, Issue 5, pp 1439–1441 | Cite as

Phospholipid metabolism in microsomes and cytosol of brain tissue of normal rats and rats with hypoxic hypoxia

  • S. V. Gasteva
  • T. E. Raize
  • L. M. Sharagina
Biochemistry and Biophysics


The content and intensity of metabolism of phosphate groups of various phospholipids (phosphatidylcholines, monophophoinositides, aminophospholipids) were studied in homogenate, microsomes, and cytosol of the rat brain under normal conditions and in hypoxic hypoxia (240 mm Hg). The concentration of phospholipids per milligram protein was found to be highest in the microsomes and lowest in the cytosol, but the total phospholipids of the cytosol had the highest metabolic rate of their free phosphate groups. Hypoxia, while not affecting the phospholipid concentration, depressed the intensity of their metabolism; this depression of metabolism, moreover, was about equal in all the tissue preparations studied.

Key Words

phospholipid metabolism rat brain hypoxia subcellular fractions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. Ya. Dvorkin, D. A. Chetverikov and A. A. Shmelev, Ukr. Biokhim. Zh.,37, 529 (1965).Google Scholar
  2. 2.
    G. V. Kiselev, Biokhimiya.,34, 483 (1969).Google Scholar
  3. 3.
    E. P. Kreps, “Phospholipids of cell membranes of the nervous system in the development of the animal kingdom” (The 22nd Bakh Lecture) [in Russian], Leningrad (1967).Google Scholar
  4. 4.
    A. V. Palladin, Ya. V. Belik, and N. M. Polyakova, The Brain Proteins and Their Metabolism [in Russian], Kiev (1972).Google Scholar
  5. 5.
    D. A. Chetverikov, S. V. Gasteva, V. Ya. Dvorkin, et al., in: Proceedings of the 5th All-Union Conference on Neurochemistry [in Russian], Tbilisi (1970), pp. 274–284.Google Scholar
  6. 6.
    G. V. Ansell, in: Form and Function of Phospholipids, (edited by G. V. Ansell et al.), Vol. 3, Amsterdam (1973), pp. 377–422.Google Scholar
  7. 7.
    G. R. Bartlett, J. Biol. Chem.,234, 466 (1959).Google Scholar
  8. 8.
    E. G. Bligh and W. I. Dyer, Can. J. Biochem.,37, 911 (1959).Google Scholar
  9. 9.
    O. H. Lowry et al., J. Biol. Chem.,193, 265 (1951).Google Scholar
  10. 10.
    W. C. McMurray, Can. J. Biochem.,53, 784 (1975).Google Scholar
  11. 11.
    E. K. Miller and R. M. C. Dawson, Biochem. J.,126, 805 (1972).Google Scholar
  12. 12.
    V. P. Skipski, R. F. Peterson, J. Sanders, et al., J. Lipid Res.,4, 227 (1963).Google Scholar
  13. 13.
    L. M. G. Van Golde, J. Raben, J. J. Batenburg, et al., Biochim. Biophys. Acta,360, 179 (1974).Google Scholar
  14. 14.
    V. P. Whittaker, Prog. Biophys. Molec. Biol.,15, 39 (1965).Google Scholar
  15. 15.
    K. W. A. Wirtz, Biochim. Biophys. Acta,344 95, (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • S. V. Gasteva
  • T. E. Raize
  • L. M. Sharagina

There are no affiliations available

Personalised recommendations