Advertisement

Soviet Powder Metallurgy and Metal Ceramics

, Volume 14, Issue 9, pp 747–750 | Cite as

High-temperature oxidation of the nitrides of the group IV transition metals

II. Oxidation of zirconium and hafnium nitrides
  • R. F. Voitovich
  • E. A. Pugach
Test Methods and Properties of Materials

Conclusions

  1. 1.

    A study was made of the oxidation of zirconium and hafnium nitrides at temperatures ranging from 400 to 1200°C.

     
  2. 2.

    It was established that, as the oxide phases forming on these nitrides — ZrO2 and HfO2 — are of the same type and scale formation at the inner phase boundary with both nitrides is a result of oxygen diffusion, the difference in oxidation behavior between zirconium and hafnium nitrides is linked solely with the structural characteristics of the resultant oxynitride phases. The differences in structure between these phases explain why the oxidation resistance of hafnium nitride in the initial and later stages of the process is greater than that of zirconium nitride.

     

Keywords

Oxidation Oxygen Zirconium Structural Characteristic Nitrides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Zhilyaev, Abstract of Candidate's Dissertation, Institute of Electrochemistry, Academy of Sciences of the USSR, Sverdlovsk (1974).Google Scholar
  2. 2.
    Yu. A. Nechaev and V. M. Kamyshov, Zh. Neorgan. Khim.,15, No. 12, 3249 (1970).Google Scholar
  3. 3.
    D. R. Glasson, J. Appl. Chem.,19, 182 (1962).Google Scholar
  4. 4.
    F. Y. Keneshea and D. L. Douglass, Oxidation Metals,3, No. 1 (1971).Google Scholar
  5. 5.
    Yu. G. Zainulin, S. I. Alyamovskii, et al., Zh. Neorgan. Khim.,16, No. 2, 315 (1971).Google Scholar
  6. 6.
    Yu. G. Zainulin, S. I. Alyamovskii, et al., Izv. Akad. Nauk SSSR, Neorgan. Mat.,7, No. 8, 1459 (1971).Google Scholar
  7. 7.
    M. E. Straumanis, C. A. Faunce, and W. J. James, J. Inorg. Chem.,5, 2024 (1966).Google Scholar
  8. 8.
    E. Rudy and F. Benesovsky, Monatsh. Chem.,92, 415 (1962).Google Scholar
  9. 9.
    G. D. Bogomolov, G. P. Shveikin, et al., Izv. Akad. Nauk SSSR, Neorgan. Mat.,7, No. 1, 67 (1971).Google Scholar
  10. 10.
    Yu. A. Nechaev and V. M. Kamyshov, in: Heterogeneous Processes Involving Solid Phases [in Russian], In-t Narodnogo Khozyaistva, Sverdlovsk (1970), p. 3.Google Scholar
  11. 11.
    P. Kofstad and D. J. Ruzicka, J. Electrochem. Soc.,47, 635 (1964).Google Scholar
  12. 12.
    H. Bilz, Z. Physik,153, 338 (1958).Google Scholar
  13. 13.
    S. P. Denker, International Symposium on Compounds of Interest in Nuclear Reactor Technology, I.W.D. Spec. Rept.,13, 51 (1961); J. Phys. Chem. Solids,25, 1397 (1964).Google Scholar
  14. 14.
    P. V. Gel'd and V. A. Tskhai, Zh. Strukt. Khim.,4, 235 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • R. F. Voitovich
    • 1
  • E. A. Pugach
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations