Basic Research in Cardiology

, Volume 91, Issue 2, pp 155–178 | Cite as

Glossary: Methods for the measurement of coronary blood flow and myocardial perfusion

  • S. G. Sakka
  • D. R. Wallbridge
  • G. Heusch
Original Contribution


Public Health Blood Flow Myocardial Perfusion Coronary Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez LG, Grayburn PA, Willard JE, Eichhorn EJ (1991) Intravascular ultrasound measurements of left main coronary artery flow. In vivo comparison to coronary sinus thermodilution. Circulation 84 (Suppl II): 677 (Abstract)Google Scholar
  2. 2.
    Astley CA, Hohimer AR, Stephenson RB, Smith OA, Spelman FA (1979) Effect of implant duration on in vivo sensitivity of electromagnetic flow transducers. Am J Physiol 236: H508–H512Google Scholar
  3. 3.
    Aukland K, Bower BF, Berliner RW (1964) Measurement of local blood flow with hydrogen gas. Circ Res 14: 164–187Google Scholar
  4. 4.
    Austin RE, Aldea GS, Coggins DL, Flynn AE, Hoffman JIE (1990) Profound spatial heterogeneity of coronary reserve. Discordance between patterns of resting and maximal myocardial blood flow. Circ Res 67: 319–331Google Scholar
  5. 5.
    Austin RE, Hauck WW, Aldea GS, Flynn AE, Coggins DL, Hoffman JIE (1989) Quantitating error in blood flow measurements with radioactive microspheres. Am J Physiol 257: H280–H288Google Scholar
  6. 6.
    Austin RE, Smedira NG, Squiers TM, Hoffman JIE (1994) Influence of cardiac contraction and coronary vasomotor tone on regional myocardial blood flow. Am J Physiol 266: H2542–H2553Google Scholar
  7. 7.
    Baer RW, Payne BD, Verrier ED, Vlahakes GJ, Molodowitch D, Uhlig PN, Hoffman JIE (1984) Increased number of myocardial blood flow measurements with radionuclide-labeled microspheres. Am J Physiol 246: H418–H434Google Scholar
  8. 8.
    Bagger JP (1984) Coronary sinus blood flow determination by the thermodilution technique: Influence of catheter position and respiration. Cardiovasc Res 19: 27–31Google Scholar
  9. 9.
    Bassingthwaighte JB, Beard DA (1995) Fractal15O-labeled water washout from the heart. Circ Res 77: 1212–1221Google Scholar
  10. 10.
    Bassingthwaighte JB, King RB, Roger SA (1989) Fractal nature of regional myocardial blood flow heterogeneity. Circ Res 65: 578–590Google Scholar
  11. 11.
    Bassingthwaighte JB, Malone MA, Moffett TC, King RB, Little SE, Link JM, Krohn KA (1987) Validity of microsphere depositions for regional myocardial flows. Am J Physiol 253: H184–H193Google Scholar
  12. 12.
    Bassingthwaighte JB, Van Beek JH, King RB (1990) Fractal branchings: the basis of myocardial flow heterogeneities? Ann New York Acad Sci 591: 392–401Google Scholar
  13. 13.
    Bergel DH, Gessner U (1966) The electromagnetic flowmeter. Methods in Medical Research. Chicago pp 70–82Google Scholar
  14. 14.
    Bing RJ, Bennish A, Bluemchen G, Cohen A, Gallagher JP, Zalesky EJ (1964) The determination of coronary flow equivalent with coincidence counting technique. Circulation 29: 833–846Google Scholar
  15. 15.
    Bing RJ, Hammond MM, Handelsman JC, Powers SR, Spencer FC, Eckenhoff JE, Goodale WT, Hafkenschiel JH, Kety SS (1949) The measurement of coronary blood flow oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38: 1–24Google Scholar
  16. 16.
    Bol A, Melin JA, Vanoverschelde JL, Baudhuin T, Vogelaers D, De Pauw M, Michel C, Luxen A, Labar D, Cogneau M (1993) Direct comparison of [13N] ammonia and [15O] water estimates of perfusion with quantification of regional myocardial blood flow by microspheres. Circulation 87: 512–525Google Scholar
  17. 17.
    Bonow RO, Berman DS, Gibbons RJ, Johnson LL, Rumberger JA, Schwaiger M, Wackers FJT (1991) Cardiac positron emission tomography. A report for health professionals from the committee on advanced cardiac imaging and technology of the council on clinical cardiology, American Heart Association. Circulation 84: 447–454Google Scholar
  18. 18.
    Bonow RO, Dilsizian V (1991) Thallium 201 for assessment of myocardial viability. Semin Nucl Med 21: 230–241Google Scholar
  19. 19.
    Brecher GA (1954) Cardiac variations in venous return studied with a new bristle flowmeter. Am J Physiol 176: 423–430Google Scholar
  20. 20.
    Bretschneider HJ, Cott L, Hilgert G, Probst R, Rau G (1966) Gaschromatographische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchblutungsmessung von Organen. Verh Dtsch Ges Kreislaufforsch 32: 267–273Google Scholar
  21. 21.
    Buckberg GD, Luck JC, Payne DB, Hoffman JIE, Archie JP, Fixler DE (1971) Some sources of error in measuring regional blood flow with radioactive microspheres. J Appl Physiol 31: 598–604Google Scholar
  22. 22.
    Burton RG, Gorewit RC (1984) Ultrasonic flowmeter — uses widebeam transit-time technique. Med Electronics 86: 68–73Google Scholar
  23. 23.
    Cannon PJ, Dell RB, Dwyer EM, Jr. (1972) Measurment of regional myocardial perfusion in man with133Xenon and a scintillation camera. J Clin Invest 51: 964–977Google Scholar
  24. 24.
    Canty JM, Brooks A (1990) Phasic volumetric coronary venous outflow patterns in conscious dogs. Am J Physiol 258: H1457–H1463Google Scholar
  25. 25.
    Canty JM, Srinivasan G (1991) Firstpass myocardial extraction of nonionic contrast is dependent upon vasomotor tone; estimates at rest and following pharmacological vasodilation using fast CT. Circulation 84 (Suppl II): 678 (Abstract)Google Scholar
  26. 26.
    Capurro NL, Goldstein RE, Aaamodt R, Smith HJ, Epstein SE (1979) Loss of microspheres from ischemic canine cardiac tissue. An important technical limitation. Circ Res 44: 223–227Google Scholar
  27. 27.
    Carlson EL, Selinger SL, Utley J, Hoffman JIE (1976) Intramyocardial distribution of blood flow in hemorhagic shock in anesthetized dogs. Am J Physiol 230: 41–49Google Scholar
  28. 28.
    Cherrik GR, Stein SW, Leevy CM, Davidson CS (1960) Indocyanine green: Observation on its physical properties, plasma decay and hepatic extraction. J Clin Invest 39: 592–600Google Scholar
  29. 29.
    Chou TM, Sudhir K, Iwanaga S, Chatterjee K, Yock PG (1994) Measurement of volumetric coronary blood flow by simultaneous intravascular two-dimensional and doppler ultrasound: validation in an animal model. Am Heart J 128: 237–243Google Scholar
  30. 30.
    Clausen G, Kirkebo A, Tyssebotn I, Ofjord ES, Aukland K (1979) Erroneus estimates of internal blood flow distribution in the dog with radiolabeled microspheres. Acta Physiol Scand 107: 385–387Google Scholar
  31. 31.
    Cousineau DF, Goresky CA, Rose CP, Simard A, Schwab AJ (1995) Effects of flow, perfusion pressure, and oxygen consumption on cardiac capillary exchange. J Appl Physiol 78: 1350–1359Google Scholar
  32. 32.
    Crystal GJ, Boatwright RB, Downey HF, Bashour FA (1979) Shunting of microspheres across the canine coronary circulation. Am J Physiol 236: H7–H12Google Scholar
  33. 33.
    Cusma JT, Morris KG, Bashore TM (1993) Angiographic measurement of coronary blood flow. Reiber JHC, Serruys PW (Eds) Advances in quantitative coronary arteriography. p 235–252Google Scholar
  34. 34.
    De Bono DP, Samani NJ, Spyt TJ, Hartshorne T, Thrush AJ, Evans DH (1992) Transcutaneous ultrasound measurement of blood-flow in internal mammary artery to coronary artery grafts. Lancet 339: 379–381Google Scholar
  35. 35.
    De Silva R, Camici PG (1994) Role of positron emission tomography in the investigation of human coronary circulatory function. Cardiovasc Res 28: 1595–1612Google Scholar
  36. 36.
    Diesbourg LD, Prato FS, Wisenberg G, Drost DJ, Marshall TP, Carroll SE, O'Neill B (1992) Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 23: 239–253Google Scholar
  37. 37.
    Dobson A, Sellers AF, McLeod FD (1966) Performance of a cuff-type blood flowmeter in vivo. J Appl Physiol 21: 1642–1648Google Scholar
  38. 38.
    Dole WP, Jackson DL, Rosenblatt JI, Thompson WL (1982) Relative error and variability in blood flow measurements with radiolabeled microspheres. Am J Physiol 243: H371–H378Google Scholar
  39. 39.
    Domenech RJ, Hoffman JIE, Noble MIM, Saunders KB, Henson JR, Subijanto S (1969) Total and regional coronary blood flow measured by radioactive microspheres in conscious and anesthetized dogs. Circ Res 25: 581–596Google Scholar
  40. 40.
    Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, Segal J (1992) Validation of a doppler guide wire for intravascular measurement of coronary flow velocity. Circulation 85: 1899–1911Google Scholar
  41. 41.
    Downey HF, Bashour FA, Jishi B, Parker PE (1979) Arteriovenous shunts in dilated or reperfused canine coronary ciculation. Microvas Res 17: 22–27Google Scholar
  42. 42.
    Dörner J (1953) Fehlermöglichkeiten bei der Durchblutungsmessung mit der Diathermie-Thermostromuhr nach H. Rein. Arch Exper Path Pharmacol 220: 490–502Google Scholar
  43. 43.
    Drost CJ (1978) Vessel diameter-independent volume flow measurements using ultrasound. Proc San Diego Biomed Symp 17: 299–302Google Scholar
  44. 44.
    Eckenhoff JE, Hafkenschiel JH, Harmel MH, Goodale WT, Lubin M, Bing RJ, Kety SS (1948) Measurement of coronary blood flow by the nitrous oxide method. Am J Physiol 152: 356–364Google Scholar
  45. 45.
    Eckenhoff JE, Hafkenschiel JH, Landmesser CM (1947) The coronary circulation in the dog. Am J Physiol 148: 582–596Google Scholar
  46. 46.
    Edelman RR, Manning WJ, Gervino E, Li W (1993) Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography. Magn Reson Med 3: 699–703Google Scholar
  47. 47.
    Edelman RR, Mattle HP, Kleefield J, Silver MS (1989) Quantification of blood flow with dynamic MR imaging and presaturation bolus tracking. Radiology 171: 551–556Google Scholar
  48. 48.
    Essex HE, Herrick JF, Baldes EJ, Mann FC (1936) Blood flow in the circumflex branch of the left coronary artery in the intact dog. Am J Physiol 117: 271–279Google Scholar
  49. 49.
    Feinstein SB, Cheirif J, Ten Cate FJ, Silverman PR, Heidenreich PA, Dick C, Desir RM, Armstrong WF, Quinones MA, Shah PM (1990) Safety and efficacy of a new transpulmonary ultrasound contrast agent: initial multicenter clinical results. J Am Coll Cardiol 16: 316–324Google Scholar
  50. 50.
    Fick A (1970) Über die Messung des Blutquantums in den Herzventrikeln. Verhandl d Phys Med Gesellschaft Würzburg: p 16Google Scholar
  51. 51.
    Flameng W, Winkler B, Wuesten B, Schaper W (1977) Minimum requirements for assessment of regional myocardial blood flow using tracer microspheres. Bibl Anat 15: 24–29Google Scholar
  52. 52.
    Frank O (1929) Theorie und Konstruktion eines optischen Strompendels. Z Biol 89: 83–84Google Scholar
  53. 53.
    Franklin DL, Ellis RM (1958) A pulsed ultrasound flowmenter. Fed Proc 17: 49Google Scholar
  54. 54.
    Franklin DL, Schlegel W, Rushmer RF (1961) Blood flow measured by Doppler frequency shift of back-scattered ultrasound. Science 134: 564–565Google Scholar
  55. 55.
    Ganz W, Lang TW, Kurita A, Hashimoto K, Corday E (1976) Measurement of regional coronary outflow by thermodilution. Correlation with inflow. Am J Cardiol 37: 138 (Abstract)Google Scholar
  56. 56.
    Ganz W, Tamura K, Marcus HS, Donoso R, Yoshida S, Swan HJ (1971) Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44: 181–195Google Scholar
  57. 57.
    Glenny RW, Bernard S, Brinkley M (1993) Validation of fluorescentlabeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74: 2585–2597Google Scholar
  58. 58.
    Goodale WT, Lubin M, Eckenhoff JE, Hafkenschiel JH, Banfield WG (1948) Coronary sinus catheterization for studying coronary blood flow and myocardial metabolism. Am J Physiol 152: 340–355Google Scholar
  59. 59.
    Gould KL (1991) Clinical cardiac positron emission tomography: State of the art. Circulation 84 (Suppl I): I-22–I-36Google Scholar
  60. 60.
    Gould KL, Mozersky DJ, Hokanson DE, Baker DW, Kennedy JW, Sumner DS, Strandness DE (1972) A noninvasive technic for determinating patency of saphenous vein coronary bypass grafts. Circulation 46: 595–600Google Scholar
  61. 61.
    Grayson J, Mendel D (1961) Myocardial blood flow in the rabbit. Am J Physiol 200: 968–974Google Scholar
  62. 62.
    Green HD (1948) Differential pressure flow meters. Methods in Medical Research. Chicago p 101–108Google Scholar
  63. 63.
    Gregg DE, Green HD (1940) Registration and interpretation of normal phasic inflow into a left coronary artery by an improved differential manometric method. Am J Physiol 130: 114–125Google Scholar
  64. 64.
    Gregg DE, Longino FH, Green PA, Czerwonka LJ (1951) A comparison of coronary blood flow determined by nitrous oxide method and by a direct method using the rotameter. Circulation 3: 89–94Google Scholar
  65. 65.
    Gregg DE, Shipley RE, Eckstein RW, Rotta A, Wearn JT (1942) Measurement of mean blood flow in arteries and veins by means of the rotameter. Proc Soc Exp Biol Med 49: 267–272Google Scholar
  66. 66.
    Gross W, Schosser R, Messmer K (1990) MIC-III; an integrated software package to support experiments using the radioactive microsphere technique. Computer Methods and Programs in Biomedicine 33: 65–85Google Scholar
  67. 67.
    Hale SL, Alker KJ, Kloner RA (1988) Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs. Circulation 78: 428–434Google Scholar
  68. 68.
    Hales JRS, Cliff WJ (1977) Direct observations of the behavior of microspheres in microvasculature. Bibl Anat 15: 87–91Google Scholar
  69. 69.
    Hamilton GW, Ritchie JL, Allen D, Lapin E, Murray JA (1975) Myocardial perfusion imaging with99mTc or113mIn macroaggregated albumin: correlation of the perfusion image with clinical, angiographic, surgical, and histologic findings. Am Heart J 89: 708–715Google Scholar
  70. 70.
    Hamilton WF, Moore JW, Kinsman JM, Spurling RG (1932) Study on the circulation. IV. Further analysis of the injection method, and the changes in hemodynamics under physiological and pathological conditions. Am J Physiol 99: 534–551Google Scholar
  71. 71.
    Hartley CJ, Cole JS (1974) An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol 37: 626–629Google Scholar
  72. 72.
    Hartman J, Koerner J, Lancaster L, Gorczynski R (1985) In vivo calibration of a transit time ultrasound system for measuring ascending aorta volume flow (AF). Pharmacologist 27: 37 (Abstract)Google Scholar
  73. 73.
    Haude M, Jehle J, Löss B, Pölitz B, Schmiel FK, Spiller P (1985) Beurteilung der Myokardperfusion anhand der mittels digitaler Subtraktionsangiographie gemessenen Kontrastmitteleinstromzeiten. Z Kardiol 74: 692–699Google Scholar
  74. 74.
    Heiss HW, Hensel I, Kettler D, Tauchert M, Bretschneider HJ (1973) Über den Anteil des Koronarsinus-Ausflusses an der Myokarddurchblung des linken Ventrikels. Z Kardiol 62: 593–606Google Scholar
  75. 75.
    Hensel H, Ruef J, Golenhofen K (1954) Fortlaufende Registrierung der Muskeldurchblutung am Menschen mit einer Kalorimetersonde. Pflügers Arch 259: 267–280Google Scholar
  76. 76.
    Hensel I, Bretschneider HJ (1970) Pilot-Rohr-Katheter für die fortlaufende Messurng der Koronar-und Nierendurchblutung. Arch Kreisl-Forsch 62: 249–292Google Scholar
  77. 77.
    Hess OM, McGillem MJ, DeBoe SF, Pinto IMF, Gallagher KP, Mancini GBJ (1990) Determination of coronary flow reserve by parametric imaging. Circulation 82: 1438–1448Google Scholar
  78. 78.
    Heymann MA, Payne BD, Hoffman JIE, Rudolph AM (1977) Blood flow measurements with radionuclidelabeled particles. Prog Cardiovasc Dis 20: 55–78Google Scholar
  79. 79.
    Hirche H, Lochner W (1962) Messung der Durchblutung und der Blutfüllung des coronaren Gefäßbettes mit der Teststoffinjektionsmethode am narkotisierten Hund bei geschlossenem Thorax. Pflügers Arch 274: 624–632Google Scholar
  80. 80.
    Hirzel HO, Krayenbuehl HP (1974) Validity of the 133 xenon method for measuring coronary blood flow. Pflügers Arch 349: 159–169Google Scholar
  81. 81.
    Hnatowich DJ (1976) Labeling of tinsoaked albumin microspheres with68Ga. J Nucl Med 17: 57–60Google Scholar
  82. 82.
    Hoffman JIE (1995) Heterogeneity of myocardial blood flow. Basic Res Cardiol 90: 103–111Google Scholar
  83. 83.
    Hoffman WE, Miletich DJ, Albrecht RF (1981) Repeated microsphere injections in rats. Life Sci 28: 2167–2172Google Scholar
  84. 84.
    Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE (1990) Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomography. J Am Coll Cardiol 15: 1032–1042Google Scholar
  85. 85.
    Ito H, Tomooka T, Sakai N, Yu H, Higashino Y, Fujii K, Masuyama T, Kitabatake A, Minamino T (1992) Lack of myocardial perfusion immediately after successful thrombolysis. Circulation 85: 1699–1705Google Scholar
  86. 86.
    Iversen PO, Nicolaysen G (1989) Heterogeneous blood flow distribution within a single skeletal muscle in the rabbit: role of vasomotion, sympathetic nerve activity and effect of vasodilation. Acta Physiol Scand 137: 125–133Google Scholar
  87. 87.
    Iversen PO, Standa M, Nicolaysen G (1989) Marked regional heterogeneity in blood flow within a single skeletal muscle at rest and during exercise hyperaemia in the rabbit. Acta Physiol Scand 136: 17–28Google Scholar
  88. 88.
    Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC (1979) The loss of radioactive microspheres from canine necrotic myocardium. Circ Res 45: 746–756Google Scholar
  89. 89.
    Kajiya F, Ogasawara Y, Tsujioka K, Nakai M, Goto M, Wada Y, Tadaoka S, Matsuoka S, Mito K, Fujiwara T (1986) Evaluation of human coronary blood flow with an 80 channel 20 MHz pulsed Doppler velocimeter and zero-cross and Fourier transform method during cardiac surgery. Circulation 74 (Suppl III): 53–60Google Scholar
  90. 90.
    Katz MA, Blantz RC (1972) Geometric error in tissue gamma-counting for minimization. J Appl Physiol 32: 533–534Google Scholar
  91. 91.
    Kety SS (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3: 1–41Google Scholar
  92. 92.
    Kety SS, Schmidt CF (1948) The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest 27: 476–483Google Scholar
  93. 93.
    Khouri EM, Gregg DE (1963) Miniature electromagnetic flow meter applicable to coronary arteries. J Appl Physiol 18: 224–227Google Scholar
  94. 94.
    King RB, Bassingthwaighte JB, Hales JRS, Rowell LB (1985) Stability of heterogeneity of myocardial blood flow in normal awake baboons. Circ Res 57: 285–295Google Scholar
  95. 95.
    Klocke FJ, Bunnell IL, Wittenberg SM, Green DG, Falsetti HL (1972) Validation of inert gas measurements of coronary blood flow and contrasting findings in patients with and without coronary artery disease. Maseri A (Ed) Myocardial blood flow in man: Methods and significance in coronary disease. Torino p 321–332Google Scholar
  96. 96.
    Klocke FJ, Rosing DR, Pittman DE (1969) Inert gas measurements of coronary blood flow. Am J Cardiol 23: 548–555Google Scholar
  97. 97.
    Klocke FJ, Wittenberg SM (1972) Methodological considerations in inert gas measurements of coronary blood flow. Maseri A (Ed) Myocardial blood flow in man: Methods and significance in coronary disease. Torino p 121–135Google Scholar
  98. 98.
    Kolin A (1936) An electromagnetic flowmeter. Principles of the method and its application to blood flow measurements. Proc Soc Exp Biol Med 35: 53–56Google Scholar
  99. 99.
    Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83: 974–982Google Scholar
  100. 100.
    Kramer K, Lochner W, Wetterer E (1962) Methods of measuring blood flow. Am Physiol Soc (Ed) Handbook of Physiology. p 1277–1324Google Scholar
  101. 101.
    Laszt L, Müller A (1957) Über Druckund Geschwindigkeitsverhältnisse im Coronarkreislauf des Hundes. Helv Physiol Acta 15: 38–54Google Scholar
  102. 102.
    Little SE, Link JM, Krohn KA, Bassingthwaighte JB (1986) Myocardial extraction and retention of 2-iododesmethylimipramine: a novel flow marker. Am J Physiol 250: H1060–H1070Google Scholar
  103. 103.
    Liu YH, Shu NH, Ritman EL (1993) A fast computed tomographic imaging method for myocardial perfusion. Am J Card Imaging 7: 301–308Google Scholar
  104. 104.
    Ludman PF, Coats AJS, Poole-Wilson PA, Underwood SR, Rees S (1992) Measurement of myocardial perfusion in humans by ultrafast x-ray computed tomography: validation by comparison with adenosine thallium tomography. Br Heart J 68: 106 (Abstract)Google Scholar
  105. 105.
    Makowski EL, Meschia G, Droegmueller W, Battaglia FC (1968) Measurement of umbilical arterial blood flow to the sheep placenta and fetus in utero. Circ Res 23: 623–631Google Scholar
  106. 106.
    Mancini GBJ (1991) Quantitative coronary angiographic methods in the interventional catheterization laboratory: an update and perspective. J Am Coll Cardiol 17: 23B-33BGoogle Scholar
  107. 107.
    Manning WJ, Atkinson DJ, Grossman W, Paulin S, Edelman RR (1991) Firstpass nuclear magnetic resonance imaging studies using gadolinum-DTPA in patients with coronary artery disease. J Am Coll Cardiol 18: 959–965Google Scholar
  108. 108.
    Manning WJ, Li W, Boyle NG, Edelman RR (1993) Fat-suppressed breathhold magnetic resonance coronary angiography. Circulation 87: 94–104Google Scholar
  109. 109.
    Marcus ML, Wilson RF, White CW (1987) Methods of measurement of myocardial blood flow in patients: a critical review. Circulation 76: 245–253Google Scholar
  110. 110.
    Maseri A (1976) Radiactive tracer techniques for evaluating coronary flow. Yu PN, Goodwin BF (Eds) Philadelphia p 141–168Google Scholar
  111. 111.
    Mathey DG, Chatterjee K, Tyberg JV, Lekven J, Brundage B, Parmley WW (1978) Coronary sinus reflux. A source of error in the measurement of thermodilution coronary sinus flow. Circulation 57: 778–786Google Scholar
  112. 112.
    Matsumoto M, Kimura K, Fujisawa A, Matsuyama T, Asai T, Uyama O, Yoneda S, Abe H (1982) Regional blood flows measured in mongolian gerbil by modified microsphere method. Am J Physiol 242: H990–H995Google Scholar
  113. 113.
    Mills CJ, Shillingford JP (1967) A catheter tip electromagnetic velocity probe and its evaluation. Cardiovasc Res 1: 263–273Google Scholar
  114. 114.
    Morawitz P, Zahn A (1912) Über den Koronarkreislauf am Herzen in situ. Zentralbl Physiol 26: 465–470Google Scholar
  115. 115.
    Morgan SM, Fisher JD, Horwitz LD (1978) Validation of regional myocardial flow measurements with scintillation camera detection of xenon-133. Invest Radiol 13: 132–137Google Scholar
  116. 116.
    Mori H, Chujo M, Haruyama S, Sakamoto H, Shinozaki Y, Uddin-Mohammed H, Iida A, Nakazawa H (1995) Local continuity of mycocardial blood flow studied by monochromatic synchrotron radiation-excited X-ray fluorescence spectrometry. Circ Res 76: 1088–1100Google Scholar
  117. 117.
    Mori H, Haruyama S, Shinozaki Y, Okino H, Iida A, Takanashi R, Sakuma I, Husseini WK, Payne BD, Hoffman JIE (1992) New nonradioactive microspheres and more sensitive X-ray fluorescence to measure regional blood flow. Am J Physiol 263: H1946–H1957Google Scholar
  118. 118.
    Müller A (1954) deÜber die Verwendung des Castelli-Prinzips zur Geschwindig-keitsmessung. Helv Physiol Pharmacol Acta 12: 300–315Google Scholar
  119. 119.
    Nilsson GE, Tenland T, Oberg PA (1980) Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow. IEEE Trans Biomed Eng 27: 597–604Google Scholar
  120. 120.
    Nissen SE, Elion JL, Booth DC, Evans J, DeMaria AN (1986) Value and limitations of computer analysis of digital subtraction angiography in the assessment of coronary flow reserve. Circulation 73: 562–571Google Scholar
  121. 121.
    Nose Y, Nakamura T, Nakamura M (1985) The microsphere method facilitates statistical assessment of regional blood flow. Basic Res Cardiol 80: 417–429Google Scholar
  122. 122.
    Ofjord ES, Clausen G, Aukland K (1981) Skimming of microspheres in vitro: implications for measurement of intrarenal blood flow. Am J Physiol 241: H342–H347Google Scholar
  123. 123.
    Ohtani H, Tamaki N, Yonekura Y, Mohiuddin IH, Hirata K, Ban T, Konishi J (1990) Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary bypass grafting. Am J Cardiol 66: 394–399Google Scholar
  124. 124.
    Peeters LLH, Grutters G, Martin CB (1980) Distribution of cardiac output in the unstressed pregnant guinea pig. Am J Obstet Gynecol 128: 1177–1184Google Scholar
  125. 125.
    Pepine CJ, Mehta J, Webster WW, Nichols WW (1978) In vivo validation of a thermodilution method to determine regional left ventricular blood flow in patients with coronary disease. Circulation 58: 795–802Google Scholar
  126. 126.
    Phibbs RH, Dong L (1970) Nonuniform distribution of microspheres in blood flowing through a medium-size artery. Can J Physiol Pharmacol 48: 415–421Google Scholar
  127. 127.
    Plass KG (1964) A new ultrasonic flowmeter for intravascular application. IEEE Trans Biomed Eng 11: 154–156Google Scholar
  128. 128.
    Prinzen FW, Glenny RW (1994) Developments in non-radioactive microscphere techniques for blood flow measurement. Cardiovasc Res 28: 1467–1475Google Scholar
  129. 129.
    Rau G (1968) Messung der Koronardurchblutung mit der Argon-Fremdgasmethode. Arch Kreisl-Forsch 58: 322–389Google Scholar
  130. 130.
    Rein H (1928) Die Thermo-Stromuhr. Ein Verfahren zur fortlaufenden Messung der mittleren absoluten Durchflußmengen in uneröffneten Gefäßen in situ. Z Biol 87: 394–418Google Scholar
  131. 131.
    Reneman RS, Jageneau AHM, van Gerven W, Dony J, Beirnaert P (1975) The radioactive microsphere method for the assessment of regional myocardial blood flow after coronary artery occlusion. Pflügers Arch 353: 337–347Google Scholar
  132. 132.
    Richeson JF, Waag RC, Zwierzynski D, Schenk EA (1989) Sequential topographical portrayal of myocardial blood flow. Am J Physiol 257: H635–H642Google Scholar
  133. 133.
    Ross RS, Ueda K, Lichtlen PR, Rees JR (1964) Measurement of myocardial blood flow in animals and man by selective injection of radioactive inert gas into the coronary arteries. Circ Res 15: 28–41Google Scholar
  134. 134.
    Rossen JD, Oskarsson H, Stenberg RG, Braun P, Talman CL, Winniford MD (1992) Simulatneous measurement of coronary flow reserve by left anterior descending coronary artery Doppler and great cardiac vein thermodilution methods. J Am Coll Cardiol 20: 402–407Google Scholar
  135. 135.
    Rovai D, Ghelardini G, Lombardi M, Trivella MG, Nevola E, Taddei L, Ferdeghini EM, Distante A, L'Abbate A (1993) Myocardial washout of sonicated iopamidol does not reflect the transmural distribution of coronary blood flow. Eur Heart J 14: 1072–1078Google Scholar
  136. 136.
    Rovai D, Ghelardini G, Trivella MG, Björklund G, Nevola E, Taddei L, Distante A, L'Abbate A (1993) Intracoronary air-filled albumin microspheres for myocardial blood flow measurement. J Am Coll Cardiol 22: 2014–2021Google Scholar
  137. 137.
    Röckemann W (1961) Ein Bubble-Flow-Meter mit elektrischer Blasenregistrierung und vereinfachtem Blasengeber. Pflügers Arch 268: 293–296Google Scholar
  138. 138.
    Rudolph AM, Heymann MA (1967) The circulation of the fetus in utero. Circ Res 21: 163–184Google Scholar
  139. 139.
    Rumberger JA, Feiring AJ, Higgins CR Lipton MJ, Ell SR, Marcus ML (1987) Use of ultrafast CT to quantitate myocardial perfusion: a preliminary report. J Am Coll Cardiol 9: 59–69Google Scholar
  140. 140.
    Rutishauser W, Simon H, Stacky JP, Schad N, Noseda G, Wellauer J (1967) Evaluation of roentgen cinedensitometry for flow measurements in models and in the intact circulation. Circulation 36: 951–963Google Scholar
  141. 141.
    Sabto J, Bankir L, Gruenfeld JP (1978) The measurement of glomerular blood flow in the rat kidney: influence of microsphere size. Clin Exp Pharmacol Physiol 5: 559–565Google Scholar
  142. 142.
    Saito T, Misaki M, Shirato K, Takishima T (1990) Three-dimensional quantitative coronary angiography. IEEE Trans Biomed Eng 37: 768–777Google Scholar
  143. 143.
    Sapirstein LA (1958) Regional blood flow by fractional distribution of indicators. Am J Physiol 193: 161–168Google Scholar
  144. 144.
    Schelbert HR (1991) Positron emission tomography for the assessment of myocardial viability. Circulation 84 (Suppl I): I-122–I-131Google Scholar
  145. 145.
    Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43: 209–218Google Scholar
  146. 146.
    Schneider CA, Voth E, Theissen P, Wienhard K, Wagner R, Baer FM, Sechtem U, Schicha H (1994) Assessment of myocardial viability in patients with chronic myocardial infarction by18F-fluoro-D-glucose positron emission tomography and99mTc-MIBI-SPECT. Z Kardiol 83: 124–131Google Scholar
  147. 147.
    Schosser R, Arfors KE, Messmer K (1979) MIC-II—A program for the determination of cardiac output, arterio-venous shunt and regional blood flow using radioactive microsphere method. Comput Programs Biomed 9: 19–38Google Scholar
  148. 148.
    Sciacca RR, Weiss MB, Blood DK, Brennan DL, Cannon PJ (1979) Comparison of regional myocardial blood flow with 133Xe and radioactive microspheres in dogs with coronary artery constrictions. Cardiovasc Res 13: 330–337Google Scholar
  149. 149.
    Segre G, Silberberg A (1961) Radial particle displacements in poiseuille flow suspensions. Nature 189: 209–210Google Scholar
  150. 150.
    Selwyn AP, Jones T, Turner JH, Pratt T, Clark J, Lavender P (1978) Continuous assessment of regional myocardial perfusion in dogs using krypton-81m. Circ Res 42: 771–777Google Scholar
  151. 151.
    151.Shepherd AP, Riedel GL, Kiel JW, Haumschild DJ, Maxwell LC (1987) Evaluation of an infrared laser Doppler blood flowmeter. Am J Physiol 252: G832–G839Google Scholar
  152. 152.
    Singer JR (1959) Blood flow rates by nuclear magnetic resonance measurements. Science 130: 1652Google Scholar
  153. 153.
    Siostrzonek P, Kranz A, Heinz M, Rödler S, Gössinger H, Kreiner G, Stämpflen A, Zehetgruber M, Schwarz M, Weber H (1993) Noninvasive estimation of coronary flow reserve by transesophageal Doppler measurement of coronary sinus flow. J Am Coll Cardiol 72: 1334–1337Google Scholar
  154. 154.
    Skolasinska K, Harbig K, Lübbers DW, Wodick R (1978) PO2 and microflow histograms of the beating heart in response to changes in arterial PO2. Basic Res Cardiol 73: 307–319Google Scholar
  155. 155.
    Smith HC, Sturm RE, Wood EH (1973) Videodensitometric system for measurement of vessel blood flow, particularly in the coronary arteries, in man. Am J Cardiol 32: 144–150Google Scholar
  156. 156.
    Smits GJ, Roman RJ, Lombard JH (1986) Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61: 666–672Google Scholar
  157. 157.
    Soskin S, Priost WS, Schultz WJ (1934) The influence of epinephrine upon exchange of sugar between blood and muscle. Am J Physiol 108: 107–117Google Scholar
  158. 158.
    Stapleton DD, van Beek JHGM, Roger S, Baskin DG, Bassingthwaighte JB (1988) Regional myocardial flow heterogeneity assessed with 2-iododesmethylimipramine. Circulation 78 (Suppl II): 405 (Abstract)Google Scholar
  159. 159.
    Stein PD, Badeer HS, Schuette WH, Zencka AE (1970) Velocity of coronary sinus blood flow as an indicator of coronary arterial flow. Am Heart J 80: 202–209Google Scholar
  160. 160.
    Stewart GN (1921) The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Am J Physiol 58: 20–44Google Scholar
  161. 161.
    Stewart RE, Schwaiger M, Molina E, Popma J, Gacioch GM, Kalus M, Squicciarini S, Al-Aouar ZR, Schork A, Kuhl DE (1991) Comparison of ribidium-82 positron emission tomography and thallium-201 SPECT imaging for detection of the coronary artery disease. Am J Cardiol 67: 1303–1310Google Scholar
  162. 162.
    Stosseck K, Lübbers DW, Cottin N (1974) Determination of local blood flow (microflow) by electrochemically generated hydrogen. Pflügers Arch 348: 225–238Google Scholar
  163. 163.
    Strauss HW, Harrison K, Langan JK, Lebowitz E, Pitt B (1975) Thallium-201 for myocardial imaging: relation of thallium-201 to regional myocardial perfusion. Circulation 51: 641–645Google Scholar
  164. 164.
    Sudhir K, Hargrave VK, Johnson EL, Aldea G, Mori H, Ports TA, Yock PG (1992) Measurement of volumetric coronary blood flow with a Doppler catheter. Validation in an animal model. Am Heart J 124: 870–875Google Scholar
  165. 165.
    Tebbenjohanns J, Nitsch J, Lüderitz B (1992) Transfemoral catheterization of the coronary sinus by Doppler catheters for determination of coronary flow reserve. Am Heart J 123: 1090–1091Google Scholar
  166. 166.
    Ten Cate FJ, Silverman PR, Sassen LMA, Verdouw PD (1992) Can myocardial contrast echo determine coronary flow reserve? Cardiovasc Res 26: 32–39Google Scholar
  167. 167.
    Tillich G, Mendoza L, Wayland H, Bing RJ (1971) Studies of the coronary microcirculation of the cat. Am J Cardiol 27: 93–98Google Scholar
  168. 168.
    Tillmanns H, Ikeda S, Hansen H, Sarma JSM, Fauvel J-M, Bing RJ (1974) Microcirculation in the ventricle of the dog and turtle. Circ Res 34: 561–569Google Scholar
  169. 169.
    Tobis JM, Mallery J, Mahon D, Lehmann K, Zalesky P, Griffith J, Gessert J, Moriuchi M, McRae M, Dwyer ML (1991) Intravascular ultrasound imaging of human coronary arteries in vivo. Circulation 83: 913–926Google Scholar
  170. 170.
    Tripp MR, Meyer MW, Einzig S, Leonhard JJ, Swayze CR, Fox IJ (1977) Simultaneous regional myocardial blood flows by tritiated water and microspheres. Am J Physiol 232: H173–H190Google Scholar
  171. 171.
    Tuma RF, Vasthare US, Irion GL, Wiedeman MP (1986) Considerations in use of microspheres for flow measurements in anesthetized rat. Am J Physiol 250: H137–H143Google Scholar
  172. 172.
    Utley J, Carlson EL, Hoffman JIE, Martinez HM, Buckberg GD (1974) Total and regional myocardial blood flow measurements with 25 μ, 15 μ, 9 μ, and filtered 1–10 μ diameter microspheres and antipyrine in dogs and sheep. Circ Res 34: 391–405Google Scholar
  173. 173.
    Vassalli G, Schulz R, Heusch G, Jiang Z, Hess O (1994) Determination of endo/epi flow ratio in the experimental animal and patients with coronary artery disease (CAD). Circulation 90: I-266 (Abstract)Google Scholar
  174. 174.
    Vogt M, Motz W, Strauer BE (1992) Coronary haemodynamics in hypertensive heart disease. Eur Heart J 13 (Suppl D): 44–49Google Scholar
  175. 175.
    von Ritter C, Hinder RA, Womack W, Bauerfeind P, Fimmel CJ, Kvietys PR, Granger DN, Blum AL (1988) Microsphere estimates of blood flow: methodological considerations. Am J Physiol 254: G275–G279Google Scholar
  176. 176.
    Vongsavan N, Matthews B (1993) Some aspects of the use of laser Doppler flow meters for recording tissue blood flow. Exp Physiol 78: 1–14Google Scholar
  177. 177.
    Wangler RD, Peters KG, Laughlin DE, Tomanek RJ, Marcus ML (1981) A method for continuously assessing coronary blood flow velocity in the rat. Am J Physiol 241: H816–H820Google Scholar
  178. 178.
    Weiss RM, Otoadese EA, Noel MP, DeJong SC, Heery SD (1994) Quantitation of absolute regional myocardial perfusion using cine computed tomography. J Am Coll Cardiol 23: 1186–1193Google Scholar
  179. 179.
    Weiss RM, Santos RM, Ginkel DL, Grover-McKay M, Marcus ML (1989) Quantitation of the subendocardial to subepicardial perfusion rate with cine CT. Circulation 80 (Suppl II): 109Google Scholar
  180. 180.
    Weisse AB, Regan TJ (1974) A comparison of thermodilution coronary sinus blood flows and krypton myocardial blood flows in the intact dog. Cardiovasc Res 8: 526–533Google Scholar
  181. 181.
    Weller DA, Adolph RJ, Wellman HN, Carroll RG, Kim O (1972) Myocardial perfusion scintigraphy after intracoronary injection of99mTc-labeled human albumin microspheres. Toxicity and efficacy for detecting myocardial infarction in dogs; preliminary results in man. Circulation 46: 963–975Google Scholar
  182. 182.
    Wetterer E (1937) Eine neue Methode zur Registrierung der Blutströmungsgeschwindigkeit am uneröffneten Gefäß. Z Biol 98: 26–36Google Scholar
  183. 183.
    Wicker P, Tarazi RC (1982) Importance of injection site for coronary blood flow determinations by microspheres in rats. Am J Physiol 243: H94–H97Google Scholar
  184. 184.
    Wilson RA, Shea MJ, De Landsheere CM, Turton D, Brady F, Deanfield JE, Selwyn AP (1984) Validation of quantitation of regional myocardial blood flow in vivo with11C-labeled human albumin microspheres and positron emission tomography. Circulation 70: 717–723Google Scholar
  185. 185.
    Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, Armstrong ML, Marcus ML, White CW (1985) Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72: 82–92Google Scholar
  186. 186.
    Wilson RF, White CW (1986) Intracoronary papaverine: an ideal coronary vasodilator for studies of the coronary circulation in conscious humans. Circulation 73: 444–451Google Scholar
  187. 187.
    Winkler B, Stämmler G, Schaper W (1982) Measurements of radioactive tracer microspheres blood flow with Nal(TI)-and Ge-well type detectors. Basic Res Cardiol 77: 292–300Google Scholar
  188. 188.
    Wodick R (1976) Möglichkeiten und Grenzen der Bestimmung der Blutversorgung mit Hilfe der lokalen Wasserstoffclearance. Akademie der Wissenschaften und der Literatur Mainz 3: 249–411Google Scholar
  189. 189.
    Wolfkiel CJ, Law WR, Jelnin V, Claudio J, Krahmer RL, Ferguson JL (1992) Measurement of elevated myocardial blood flows with ultrafast computed tomography and intravenous contrast medium. Circulation 86: 165 (Abstract)Google Scholar
  190. 190.
    Wolpers HG, Hoeft A, Korb H, Lichtlen PR, Hellige G (1990) Heterogeneity of myocardial blood flow under normal conditions and its dependence on arterial PO2. Am J Physiol 258: H549–H555Google Scholar
  191. 191.
    Woodcock JP (1975) Theory and practice of blood flow measurement. Woburn: Mass p 109Google Scholar
  192. 192.
    Wu X-S, Ewert DL, Liu Y-H, Ritman EL (1992) In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 85: 730–737Google Scholar
  193. 193.
    Wyatt DG (1961) Problems in measurement of blood flow by magnetic induction. Phys Med Biol 5: 289–320Google Scholar
  194. 194.
    Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yammamori S, Ohno K, Hosaka H, Kajiya F (1993) In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 72: 939–946Google Scholar
  195. 195.
    Yamagishi M, Yasu T, Ohara K, Kuro M, Miyatake K (1991) Detection of coronary blood flow associated with left main coronary artery stenosis by transesophageal Doppler color flow echocardiography. J Am Coll Cardiol 17: 87–93Google Scholar
  196. 196.
    yipintsoi T, Dobbs WA, Scanlon PD, Knopp TJ, Bassingthwaighte JB (1973) Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts. Circ Res 33: 573–587Google Scholar
  197. 197.
    Zimmermann R, Mall G, Rauch B, Zimmer G, Gabel M, Zehelein J, Bubeck B, Tillmanns H, Hagl S, Kübler W (1995) Residual201TI activity in irreversible defects as a marker of myocardial viability. Clinicopathological study. Circulation 91: 1016–1021Google Scholar

Copyright information

© Steinkopff Verlag 1996

Authors and Affiliations

  • S. G. Sakka
    • 1
  • D. R. Wallbridge
    • 1
  • G. Heusch
    • 1
  1. 1.Deparment of Pathophysiology Centre of Internal MedicineUniversity of Essen Medical School Universitätsklinikum EssenEssenFRG

Personalised recommendations