Advertisement

Bulletin of Experimental Biology and Medicine

, Volume 84, Issue 2, pp 1116–1118 | Cite as

Activity and electrophoretic multiplicity of molecular forms of superoxide dismutase in human blood cells

  • V. A. Gusev
  • T. Lamchingiin
  • A. M. Gerasimov
Biochemistry and Biophysics

Abstract

The level of superoxide dismutase (SOD) activity calculated relative to protein in the various human blood cells falls in the following order: platelet > erythrocyte > lymphocyte > granulocyte. During electrophoresis in homogeneous polyacrylamide gel of homogenates of granulocytes, lymphocytes, and platelets three zones of SOD activity were identified. Two fractions of the enzyme, disappearing after treatment with cyanide, were found in lysates of erythrocytes after removal of the hemoglobin. Of the two SOD fractions of platelets, lymphocytes, and granulocytes migrating rapidly toward the anode, the first corresponds in its ability to be inhibited by cyanide or organic solvents to the cytosol isozyme, the second to the mitochondrial isozyme. The third cathode fraction was not identified. The functional role of SOD in specialized blood cells and the cause of heterogeneity of the enzyme are discussed.

Key Words

superoxide dismutase erythrocytes platelets lymphocytes granulocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. M. Gerasimov and O. S. Brusov, in: Abstracts of Scientific Proceedings of the Third All-Union Biochemical Congress [in Russian], Vol. 2, Riga (1974), p. 247.Google Scholar
  2. 2.
    V. A. Leontovich, N. N. Abezgauz, and V. M. Troshina, Probl. Gematol., No. 9, 22 (1974).Google Scholar
  3. 3.
    Yu. E. Mikhailov, A. M. Gerasimov, and O. S. Brusov, Byull. Éksp. Biol. Med., No. 8, 959 (1976).Google Scholar
  4. 4.
    L. F. Panchenko, O. S. Brusov, A. M. Gerasimov, et al., FEBS Lett.,55, 84 (1975).Google Scholar
  5. 5.
    C. C. Beauchamp and I. Fridovich, Anal. Biochem.,44, 276 (1971).Google Scholar
  6. 6.
    J. Beckman, E. Lundgren, and A. Tarnvic, Human Hered.,23, 338 (1973).Google Scholar
  7. 7.
    J. A. Fee and H. D. Teitelbaum, Biochim. Biophys. Res. Commun.,49, 150 (1972).Google Scholar
  8. 8.
    M. H. Fukami, M. Holsen, and J. Bauer, Biochim. Biophys. Acta,248, 253 (1976).Google Scholar
  9. 9.
    S. J. Klebanoff, J. Biol. Chem.,249, 3724 (1974).Google Scholar
  10. 10.
    C. Malmsten, M. Hamberg, J. Swenson, et al., Proc. Nat. Acad. Sci. USA,72, 1446 (1975).Google Scholar
  11. 11.
    J. M. McCord and I. Fridovich, Proc. Nat. Acad. Sci. USA,68, 1024 (1971).Google Scholar
  12. 12.
    J. M. McCord and I. Fridovich, J. Biol. Chem.,244, 6049 (1969).Google Scholar
  13. 13.
    P. M. Sinet, F. Lavelle, A. M. Michelson, et al., Biochem. Biophys. Res. Commun.,67, 904 (1975).Google Scholar
  14. 14.
    C. C. Winterbourn, R. E. Hawkins, M. Brian, et al., J. Lab. Clin. Med.,82, 337 (1975).Google Scholar
  15. 15.
    R. A. Weisiger and I. Fridovich, J. Biol. Chem.,248, 3582 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. A. Gusev
  • T. Lamchingiin
  • A. M. Gerasimov

There are no affiliations available

Personalised recommendations