Soviet Powder Metallurgy and Metal Ceramics

, Volume 19, Issue 3, pp 145–149 | Cite as

Properties of fine metal powders produced by the formate pyrolysis method

  • N. M. Khokhlacheva
  • V. N. Paderno
  • M. E. Shilovskaya
  • M. A. Tolstaya
Theory, Production Technology, and Properties of Powders and Fibers


Optimum parameters have been determined for the processes of preparation of fine copper, nickel, and cobalt powders by the pyrolysis of formates in a protective argon atmosphere. Use of fine copper, nickel, and cobalt powders prepared by this method as interlayers in the vacuum diffusion welding of copper and steel parts enables the temperature of the process to be substantially lowered. Copper coatings can be applied to metallic and nonmetallic materials in the course of the pyrolysis of copper formate.


Copper Nickel Welding Pyrolysis Argon Atmosphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. I. Khimchenko, V. P. Vasilenko, L. S. Radkevich, V. V. Myalkovskii, T. V. Chubar', and V. M. Chegoryan, “Decomposition of iron, cobalt, nickel, and copper formates,” Poroshk. Metall., No. 5, 7–13 (1977).Google Scholar
  2. 2.
    N. M. Khokhlachev, M. E. Shilovskaya, V. V. Pavlova, and L. N. Flegontova, “Pyrolysis of the formates of some metals,” Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 2, 74–78 (1977).Google Scholar
  3. 3.
    V. P. Kornienko, “Effect of the nature of the cation on the thermal decomposition of formates,” r. Nauchno-Issled. Inst. Khim. Kharkovsk. Gosk. Univ.,10, 123–133 (1953).Google Scholar
  4. 4.
    S. V. Markevich, “Mechanism of the thermal decomposition of iron, cobalt, and nickel formates,” Nauchn. Tr. Inst. Khim., Akad. Nauk BSSR,5, No. 1, 233–239 (1956).Google Scholar
  5. 5.
    V. P. Kornienko, “Kinetics and chemistry of the thermal decomposition of formates and oxalates,” Nauchn. Tr. Inst. Khim., Akad. Nauk BSSR,1, No. 1, 92–99.Google Scholar
  6. 6.
    V. Zapletal, “Thermal decomposition of the formates of some metals,” Chem. Listy, No. 50, 1406–1409 (1956).Google Scholar
  7. 7.
    É. M. Natanson, Yu. I. Khimchenko, and L. S. Radkevich, “Thermographic and thermogravimetric investigation of the decomposition process of iron, cobalt, and nickel formates,” in: Physicochemical Mechanics and Lyophilic Properties of Disperse Systems [in Russian], Vol. 1, Naukova Dumka, Kiev (1968), pp. 162–164.Google Scholar
  8. 8.
    V. V. Panichkina and L. V. Strashinskaya, “Changes in the surface structure of particles during the reduction of molybdic anhydride,” Poroshk. Metall., No. 6, 5–8 (1975).Google Scholar
  9. 9.
    I. D. Morokhov, S. P. Chizhik, V. A. Pushkov, Kh. B. Khokonov, and L. K. Grigor'eva, “Dispersion methods of joining materials,” in: New Methods of Assembly [in Russian], Vol. 3, Élektronika, Moscow (1977), pp. 87–98.Google Scholar
  10. 10.
    Ya. E. Geguzin, Physics of Sintering [in Russian], Nauka, Moscow (1967).Google Scholar
  11. 11.
    A. Keller and F. Körösy, “Volatile cuprous and silver salts of fatty acids,” Nature,162, 580–582 (1948).Google Scholar
  12. 12.
    U.S. Pat. No. 3119713, January 28, 1964.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • N. M. Khokhlacheva
    • 1
  • V. N. Paderno
    • 1
  • M. E. Shilovskaya
    • 1
  • M. A. Tolstaya
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkrain

Personalised recommendations