Skip to main content
Log in

Azide mit zwei verschiedenen Metallatomen

Azides containing two different metal atoms

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

Crystal structures of azides containing two different metal atoms are discussed. Elements with higher electronegativity have the greatest influence on the structures. They form finite or infinite metal azide complexes, the degree of covalent binding betweenM(II) and azide groups raises with increasing ionisation potential of the metal, the stability of complex azides is not influenced seriously thereof. The arrangement ofM(I)-ions is influenced to a large extent by the stereochemistry. The azide groups are essentially asymmetrical with N-N-distances between 1.10 and 1.28 Å, the mean distance is 1.18 (3) Å. Azide groups are slightly bent [N-N-N=177 (5)°] and are always coordinated to several metal atoms. Frequently the central nitrogen atoms of azide groups are located closer toM(I)-ions than terminal nitrogens. Some complex azides contain water which is situated beside the azide groups within the coordination polyhedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Müller U., Structure and Bonding14, 141 (1973).

    Google Scholar 

  2. Brunner A. C., Krischner H., Z. Kristallogr.142, 24 (1975).

    Google Scholar 

  3. Platzer G. F., Krischner H., Z. Kristallogr.141, 363 (1975).

    Google Scholar 

  4. Krischner H., Baumgartner O., Maier H. E., Saracoglu A. I., Z. Kristallogr.164, 89 (1983).

    Google Scholar 

  5. Yoganarasimhan S. R., Jain R. C., Indian J. Chem.7, 808 (1969).

    Google Scholar 

  6. Winkler H., Krischner H., Indian J. Chem.13, 611 (1975).

    Google Scholar 

  7. Sood R. K., Yoganarasimhan S. R., Indian J. Chem.9, 1403 (1971).

    Google Scholar 

  8. Krischner H., Winkler H., Z. anorg. allg. Chem.413, 94 (1975).

    Google Scholar 

  9. Agrell I., Vannerberg N. G., Acta Chem. Scand.25, 1630 (1971).

    Google Scholar 

  10. Agrell I., Acta Chem. Scand.24, 1247 (1970).

    Google Scholar 

  11. Winkler H. G., Spath H. T., Torkar K., Monatsh. Chem.106, 535 (1975).

    Google Scholar 

  12. Oswald H. R., Jaggi H., Helv. Chim. Acta43, 72 (1960).

    Google Scholar 

  13. Brehler B., Z. Kristallogr.109, 68 (1957).

    Google Scholar 

  14. Maier H. E., Krischner H., Paulus H., Z. Kristallogr.157, 277 (1981).

    Google Scholar 

  15. Walitzi E. M.,Krischner H.,Saracoglu A. I., Z. Kristallogr., im Druck.

  16. Pauling L., Proc. Natl. Acad. Sci.15, 709 (1929).

    Google Scholar 

  17. Balz D., Plieth K., Z. Electroch.59, 545 (1955).

    Google Scholar 

  18. Clegg W., Krischner H., Saracoglu A. I., Sheldrick G. M., Z. Kristallogr.161, 307 (1982).

    Google Scholar 

  19. Krischner H., Kratky Ch., Maier H. E., Z. Kristallogr.161, 225 (1982).

    Google Scholar 

  20. Haselmair H., Krischner H., Z. anorg. allg. Chem.463, 75 (1980).

    Google Scholar 

  21. Bassiere M., Compt. Rend.204, 1573 (1937).

    Google Scholar 

  22. Agrell I., Acta Chem. Scand.24, 3575 (1970).

    Google Scholar 

  23. Wyckoff R. W. G., Crystal Structures, 1, S. 271. New York: Interscience. 1963.

    Google Scholar 

  24. Wells A. F., Structural Inorganic Chemistry, S. 358. Oxford: Clarendon Press. 1962.

    Google Scholar 

  25. Krischner H.,Mautner F. A.,Kratky Ch., Z. anorg. allg. Chem. in Vorbereitung.

  26. Krischner H., Saracoglu A. I., Mautner F. A., Kratky Ch., Z. Kristallogr.165, 85 (1983).

    Google Scholar 

  27. Bever A. K., Van Nieuwenkamp W., Z. Kristallogr.90 A, 374 (1935).

    Google Scholar 

  28. Feitknecht W., Oswald H. R., Forsberg H. E., Chimia (Aarau)13, 113 (1959).

    Google Scholar 

  29. Krischner H.,Mautner F. A.,Kratky Ch., Z. Kristallogr., im Druck.

  30. Krischner H., Mautner F. A., Kratky Ch., Acta Cryst.C 39, 941 (1983).

    Google Scholar 

  31. Saracoglu A. I., Krischner H., Kratky Ch., Z. Kristallogr.165, 79 (1983).

    Google Scholar 

  32. Krischner H., Maier H. E., Baumgartner O., Z. Kristallogr.153, 63 (1980).

    Google Scholar 

  33. Paar W., Krischner H., Z. anorg. allg. Chem.479, 212 (1981).

    Google Scholar 

  34. Hofer F., Diplomarbeit, Technische Universität Graz 1979.

  35. Walitzi E. M., Krischner H., Z. Kristallogr.147, 75 (1978).

    Google Scholar 

  36. Krischner H., Maier H. E., Baumgartner O., Z. Kristallogr.155, 211 (1981).

    Google Scholar 

  37. Krischner H., Maier H. E., Baumgartner O., Z. Kristallogr.155, 201 (1981).

    Google Scholar 

  38. Krischner H., Saracoglu A. I., Kratky Ch., Z. Kristallogr.159, 225 (1982).

    Google Scholar 

  39. Walitzi E. M., Krischner H., Z. Kristallogr.132, 19 (1970).

    Google Scholar 

  40. Walitzi E. M., Krischner H., Z. Kristallogr.137, 368 (1973).

    Google Scholar 

  41. Döll W., Klemm W., Z. anorg. Chem.241, 239 (1939).

    Google Scholar 

  42. Vainstein B. K., Pinsker Z. G., Zhur. Fiz. Khim.23, 1058 (1949).

    Google Scholar 

  43. Evans B. L., Yoffe A. D., Chem. Rev.59, 515 (1959).

    Google Scholar 

  44. Pringle G. E., Noakes D. E., Acta Cryst.B 24, 262 (1968).

    Google Scholar 

  45. Ledesert M., Z. Kristallogr.165, 199 (1983).

    Google Scholar 

  46. Krischner H., Kelz G., Z. anorg. allg. Chem.494, 203 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krischner, H. Azide mit zwei verschiedenen Metallatomen. Monatsh Chem 116, 189–202 (1985). https://doi.org/10.1007/BF00798454

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00798454

Keywords

Navigation