Skip to main content
Log in

On the interaction between gold and copper in mercury

Über die Wechselwirkung zwischen Gold und Kupfer in Quecksilber

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Abstract

On the base of cyclic voltammetry, chronoamperometry and potentiometry experiments with the use of the hanging mercury drop electrodes, there was found that a solid AuCu compound is formed in the complex Au-Cu amalgam. The stability of AuCu is controlled by its solubility product, which is equal (7.1±1.5)·10−6 M 2 at 298 K. The temperature dependence of the solubility product allowed to determine ΔH AuCu of formation in mercury. This value is compared with ΔH AuCu of the reaction in the binary system. On the basis of theBorn-Haber cycle one may conclude that the AuCu formed in mercury phase should have the same structure as in the binary alloy. Some thermodynamic aspects of reactions in the Au-Cu-Ga amalgam are discussed. The solubility of copper in mercury was experimentally confirmed and is equal (1.1±0.1) · 10−2at.%.

Zusammenfassung

Mit Hilfe von voltammetrischen, chronoamperometrischen und potentiometrischen Experimenten mit der hängenden Quecksilbertropfelektrode wurde eine feste AuCu-Verbindung in Au-Cu-Amalgam gefunden. Die Beständigkeit der Verbindung AuCu wird durch das Löslichkeitsprodukt bestimmt, das gleich (7,1 ± 1,5) · 10−6 M 2 bei 298 K ist. Die Temperaturabhängigkeit des Löslichkeitsproduktes erlaubt die Bestimmung der Bildungswärme ΔH AuCu der Verbindung in Quecksilber. Dieser Wert wird mit der Bildungswärme ΔH AuCu im binären System verglichen. Auf der Basis desBorn-Haber-Kreisprozesses kann man schließen, daß das in Quecksilber gebildete AuCu dieselbe Struktur wie im binären System hat. Verschiedene thermodynamische Aspekte der Reaktionen in Au-Cu-Ga-Amalgam werden diskutiert. Die Löslichkeit von Kupfer in Quecksilber wurde experimentell bestätigt und beträgt (1,1 ± 0,1) · 10−2 at.%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hansen M., Anderko K., Constitution of Binary Alloys. New York: McGraw-Hill. 1958.

    Google Scholar 

  2. Elliot R. P., Constitution of Binary Alloys, I supplement. New York: McGraw-Hill. 1965.

    Google Scholar 

  3. Shunk F. A., Constitution of Binary Alloys, II supplement. New York: McGraw-Hill. 1969.

    Google Scholar 

  4. Moffatt W. G., Constitution of Binary Alloys, continuous supplement. New York: General Electric. 1978–1982.

    Google Scholar 

  5. Sennechales M., Ing. Chim.19, 70 (1935); C.A.30, 21538 (1936).

    Google Scholar 

  6. Kaplin A. A.,Rashentseva T. F.,Stromberg A. G.,Anisimova A. S.,Pikula N. P., Sbor. Annot. Nauch. Issled. Rab. Tomsk. Politekh. Inst.1975, no. 6, 75.

  7. Sasim D., M.Sc. thesis, University of Warsaw, 1974.

  8. Gumiński C., Ph.D. thesis, University of Warsaw, 1975.

  9. Śrudka M., M.Sc. thesis, University of Warsaw, 1978.

  10. Stepanova O. S., Izv. Tomsk. Politekh. Inst.151, 14 (1966).

    Google Scholar 

  11. Kemula W., Galus Z., Kublik Z., Bull. Acad. Polon. Sci., Ser. Sci. Chim. Geol. Geogr.6, 661 (1958).

    Google Scholar 

  12. Gumiński C., Galus Z., Bull. Acad. Polon. Sci., Ser. Sci. Chim.19, 771 (1971).

    Google Scholar 

  13. Gumiński C., Galus Z., ibid.20, 1037 (1972).

    Google Scholar 

  14. Kemula W., Kublik Z., Anal. Chim. Acta18, 104 (1958).

    Google Scholar 

  15. Galus Z.,Gumiński C., Solubility Data Series: Metals and Intermetallic Compounds in Mercury. London: Pergamon. (In press.)

  16. Lugsheider E., Jangg G., Z. Metallk.62, 548 (1971).

    Google Scholar 

  17. Stromberg A. G., Mesyats N. A., Mikheeva N. P., Zh. Fiz. Khim.45, 1521 (1971).

    Google Scholar 

  18. Dowgird A., Ph.D. thesis, University of Warsaw, 1972.

  19. Dowgird A., Galus Z., Bull. Acad. Polon. Sci., Ser. Sci. Chim.26, 701 (1978).

    Google Scholar 

  20. Orr R. L., Acta Met.8, 489 (1960).

    Google Scholar 

  21. Tammann G., Ohler E., Z. anorg. Chem.135, 118 (1924).

    Google Scholar 

  22. Kozin L. F., Nigmetova S. Sh., Dergacheva M. B., Termodinamika Binarnykh Amalgamnykh Sistem. Alma-Ata: Nauka. 1977.

    Google Scholar 

  23. Jangg G., Palman H., Z. Metallk.54, 364 (1963).

    Google Scholar 

  24. Lange A. A., Bukhman S. P., Kairbaeva A. A., Izv. Akad. Nauk Kaz. SSR, Ser. Khim.24, no. 5, 37 (1974).

    Google Scholar 

  25. Igolinskii V. A., Shalaevskaya V. N., Elektrokhimia10, 536 (1974).

    Google Scholar 

  26. Bonnier E., Desre P., Compt. Rend.253, 867 (1961).

    Google Scholar 

  27. Omarova N. D.,Filippova L. M.,Zebreva A. I., Sborn. Rabot Khim., Alma-Ata1973, no. 3, 358.

  28. Kubaschewski O., Catterall J. A., Thermochemical Data of Alloys. London: Pergamon. 1956.

    Google Scholar 

  29. Hultgren R., Orr R. L., Anderson P. D., Kelley K. K., Selected Values of Thermodynamic Properties of Metals and Alloys. New York: Wiley. 1963.

    Google Scholar 

  30. Stepanova O. S., Zakharov M. S., Trushina L. F., Aparina V. I., Izv. Vyssh. Ucheb. Zaved., Khim. Khim. Tekhnol.7, 184 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasim, D., Śrudka, M. & Gumiński, C. On the interaction between gold and copper in mercury. Monatsh Chem 115, 45–56 (1984). https://doi.org/10.1007/BF00798420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00798420

Keywords

Navigation