Skip to main content
Log in

Proteinase inhibitors in animal blood with special regard to equine pulmonary disease: α1-proteinase inhibitor and α2-macroglobulin

  • Review Article
  • Published:
Comparative Haematology International Aims and scope Submit manuscript

Conclusion

Although the proteinase-proteinase inhibitor disequilibrium theory has been used to explain the development of lung disease in humans, it does not explain the high incidence of COPD in the horse. First, the genetic α1-PI deficiency shown in humans has never been observed in the horse and if such a disorder exists in the horse, it must be a very rare event which does not correlate with the COPD incidence. Second, since they are only present in low amounts, endogeneous elastolytic enzymes from neutrophils and macrophages in horses do not seem to play the fundamental role postulated by the disequilibrium theory of humans. Alternatively, exogeneous proteinases derived from fungi and bacteria, which are not neutralised by proteinase inhibitors in the blood, may be responsible for the generation of COPD in horses. Although α1-PI deficiency cannot be completely excluded as a cause of COPD, other proteinase inhibitors in the blood and body fluids may also be involved in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams WR, Kimbel P, Weinbaum G (1978) Purification and characterization of canine α1-antiproteinase. Biochemistry 17:3556–3561

    Google Scholar 

  • Aubry M, Bieth J (1977) Kinetics of inactivation of human and bovine trypsins and chymotrypsins by α1-proteinase inhibitors and of their inactivation by α2-macroglobulin. Clin Chim Acta 78:371–380

    Google Scholar 

  • Barrett AJ, Starkey PM (1973) The interaction of α2-macroglobulin with proteinases. Characteristics and specificity of the reaction and hypothesis concerning its molecular mechanism. Biochem J 139:359–368

    Google Scholar 

  • Barrett AJ, Brown MA, Sayers CA (1979) The electrophoretically ‘slow’ and ‘fast’ forms of the α2-macroglobulin molecule. Biochem J 181:401–418

    Google Scholar 

  • Berne BH, Greene ND, Damian RT (1971) Immunological identification of two groups of alpha-macroglobulins present in mammalian sera. Fed Proc 31:839

    Google Scholar 

  • Berne BH, Drong S, Knight K (1972) Immunological relationships of serum macroglobulin in the human, rat and rabbit. Proc Soc Exp Biol Med 138:531–535

    Google Scholar 

  • Berninger RW, Mathis RK (1976) Isolation and characterization of α1-antitypsin from Rhesus-monkey serum. Biochem J 159:95–104

    Google Scholar 

  • Biddle F, Shortridge KF (1967) Immunological cross-reaction of influenza virus inhibitors. Br J Exp Pathol 48:285–293

    Google Scholar 

  • Bígnon J, Scarpa GL (1981) Biochemistry, pathology and genetics of pulmonary emphysema. Pergamon Press, Oxford

    Google Scholar 

  • Bourrillon R, Razafimahaleo E (1972) In: Gottschalk A (ed) Glycoproteins: their composition, structure and function, 2nd edn. Elsevier, Amsterdam, pp 699–715

    Google Scholar 

  • Bracher DV, von Fellenberg R, Winder CN et al. (1991) An investigation of the incidence of chronic obstructive pulmonary disease (COPD) in random population of Swiss horses. Equine Vet J 23:136–141

    Google Scholar 

  • Braend M (1967) Variation of horse prealbumins in acidic starch gels. Acta Vet Scand 8:193–194

    Google Scholar 

  • Braend M (1970) Genetics of horse acidic prealbumins. Genetics 65:495–503

    Google Scholar 

  • Braend M, Romagnoli A (1980) Variation of acidic prealbumin in the donkey. Anim Blood Grps Biochem Genet 11:77–80

    Google Scholar 

  • Briese V, Willroth PO, Brock J et al. (1984) Zum Verhalten einiger Tumormarker (α2 macroglobulin, sekretisches Immunoglobulin A, schwangerschaftsassoziiertes α2-Glycoprotein) im Serum von Patienten mit Bronchialkarzinom. Arch Geschwulstforsch 54:391–398

    Google Scholar 

  • Brissenden JE, Cox DW (1983) α2-macroglobulin in patients with obstructive lung disease, with and without α1-antitypsin-deficiency. Clin Chim Acta 128:241–248

    Google Scholar 

  • Brown WM, Dziegielewska KM, Foreman RC et al. (1989) Nucleotide and deducted amino acid sequence of sheep α1 antitypsin. Nucleic Acids Res 17:6398

    Google Scholar 

  • Carp H, Janoff A (1979) In vitro suppression of serum elastase inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin Invest 63:793–797

    Google Scholar 

  • Carrell RW, Travis J (1985) α1-Antitrypsin and the serpins: variation and countervariation. Trends Biol Sci 10:20–24

    Google Scholar 

  • Carrell RW (1986) α1-Antitrypsin: molecular pathology, leukocytes and tissue damage. J Clin Invest 78:1427–1431

    Google Scholar 

  • Chao S, Chai KX, Chao L et al. (1990) Molecular cloning and primary structure of rat α1-antitrypsin. Biochemistry 29:323–329

    Google Scholar 

  • Cohen A, Belyavin G (1959) Haemagglutination inhibition of Asian influenza viruses: a new pattern response. Virology 7:59–74

    Google Scholar 

  • Cohen AB (1975) The inactivation of α1-antitrypsin with chymotrypsin, trypsin and elastase. Biochim Biophys Acta 391:193–200

    Google Scholar 

  • Cohen AB, McArthur C, James H (1986) The control of neutrophil migrations through the lung: an unexplored means of treating smokers with pulmonary emphysema. In: Taylor J, Mittman C (eds) Pulmonary emphysema and proteolysis. Academic Press, New York, pp 189–196

    Google Scholar 

  • Cook WR, Rossdale PB (1963) The syndrome of ‘broken wind’ in the horse. Proc R Soc Med 56:972–977

    Google Scholar 

  • Cox DW (1989) α1-antitrypsin deficiency. In: Scriver CR (ed.) The Metabolic basis of inherited disease. McGraw-Hill, New York, pp 2409–2437

    Google Scholar 

  • Crystal RG (1989) The α1-antitrypsin gene and its deficiency states. Trends Genetics 5:411–417

    Google Scholar 

  • Crystal RG (1990) α1-Antitrypsin deficiency, emphysema, and liver disease. Genetic basis and strategies for therapy. J Clin Invest 85:1343–1352

    Google Scholar 

  • Dubin A, Potempa J, Silberring J (1984) α2-macroglobulin from horse plasma. Purification, properties and interaction with certain serine proteinases. Biochem Int 8:589–596

    Google Scholar 

  • Dubin A, Potempa J, Kurdowska A et al. (1986) Comparison of antiproteolytic activities of alpha-1 proteinase inhibitors from the plasma of some mammalian species. Comp Biochem Physiol 8313:375–380

    Google Scholar 

  • Dubin A, Travis J, Enghild JJ et al. (1992) Equine leukocyte elastase inhibitor: primary structure and identification as a thymosine binding protein. J Biol Chem 267:6576–6583

    Google Scholar 

  • Dunn JT, Spiro RG (1967) The α2-macroglobulin of human plasma. Isolation and composition. J Biol Chem 242:5549–5555

    Google Scholar 

  • Ek N (1977) Identification of the Pr prealbumin proteins in horse serum. Acta Vet Scand 18:458–470

    Google Scholar 

  • Fagerhol MK, Cox DW (1981) The Pi polymorphism: genetic, biochemical and clinical aspects of human α1-antitrypsin. In: Harris H, Hirschorn K (eds.) Advances in human genetics, Vol. 11. Plenum Press, New York, London, pp 1–62

    Google Scholar 

  • Fermi C, Pernossi L (1894) Ueber die Enzyme. Vergleichende Studie. Zeitshr Hyg 18:83–127

    Google Scholar 

  • Festoff BW (1983) Occurrence of reduced α2-macroglobulin and lowered protease inhibiting capacity in plasma of amyotrophic lateral sclerosis patients. Ann NY Acad Sci 421:377–381

    Google Scholar 

  • Gahne B (1966) Studies on the inheritance of electrophoretic forms of transferins, albumins, prealbumins and plasma esterase of horses. Genetics 53:581–594

    Google Scholar 

  • Ganong WF (1983) Review of medical physiology. Lange Medical Publications, Los Altos, CA, pp 10–12

    Google Scholar 

  • Ganrot K (1966) Determination of α2-macroglobulin as trypsinprotein esterase. Clin Chim Acta 14:493–551

    Google Scholar 

  • Ganrot K (1973) α2-acute phase globulin in rat serum. Purification determination and interaction with trypsin. Biochim Biophys Acta 295:245–251

    Google Scholar 

  • Gauthier F, Monray H (1975) Comparative study of rat α1-macroglobulin and rat α2-macroglobulin: interaction with trypsin and chymotrypsin. Protides Biol Fluids 23:139–143

    Google Scholar 

  • Gauthier F, Leng M, Monray H (1974) Isolament, propriétés physique et morphologie en microscopie électronique de l'α2-macroglobulin du sérum de Rat. CR Acad Sci Paris 279:1409–1412

    Google Scholar 

  • Gillespie JR, Tyler WS (1969) Chronic alveolar emphysema in the horse. Adv Vet Sci Comp Med 13:59–99

    Google Scholar 

  • Glaser CB, Karic L, Cohen AB (1977) Low pH stability of alpha-1-antitrypsin. Biochim Biophys Acta 491:327–334

    Google Scholar 

  • Grünig G, von Fellenberg R, Maier R et al. (1986) Elastase producing microorganisms in horse lung — their possible role in the pathomechanisms of chronic pulmonary disease in the horse. Equine Vet J 18:396–400

    Google Scholar 

  • Grünig G, Hermann M, Howald B et al. (1989) Partial divergence between airway inflammation and clinical signs in equine chronic pulmonary disease. Equine Vet J 21:145–148

    Google Scholar 

  • Hall PK, Roberts RC (1978) Physical and chemical properties of human α2-macroglobulin. Biochem J 171:27–38

    Google Scholar 

  • Hanaoka K, Pritchett TJ, Takasaki S et al. (1989) 4-O-Acetyl-N-acetylneuraminic acid in theN-linked carbohydrate structures of equine and guinea pig α2-macroglobulins, potent inhibitors of influenza virus infection. J Biol Chem 264:9842–9849

    Google Scholar 

  • Harpel PC (1973) Studies of human plasma α2 macroglobulin enzyme interactions. Evidence for proteolytic modification of the subunit chain structure. J Exp Med 138:508–521

    Google Scholar 

  • Harpel PC, Hayes MB (1979) In: Collen D, Wiman B, Verstaete M (eds) The physiological inhibitors of blood coagulation and fibrinolysis. Elsevier North Holland, Amsterdam, pp 231–238

    Google Scholar 

  • Haverbach BJ, Dyce B, Bundy HF et al. (1962) Protein binding of pancreatic proteolytic enzymes. J Clin Invest 41:972–980

    Google Scholar 

  • Heidetmann H, Travis J (1986) Human α1-proteinase inhibitor. In: Barrett AJ, Salvesen GS (eds) Proteinase inhibitors. Elsevier, Amsterdam, pp 441–456

    Google Scholar 

  • Hermann M, Grünig G, Bracher V et al. (1988) Eosinophile Granulozyten im Tracheobronchialsekret von Pferden: Anhaltspunkt für parasitäre Lungenerkrankung? Schweiz Arch Tierheikd 130:19–28

    Google Scholar 

  • Hintz P, Jochum M, Mossmann H (1987) Purification and characterization of a neutral proteinase inhibitor from bovine neutrophils. Biol Chem Hoppe-Seyler 368:1333–1342

    Google Scholar 

  • Hsueh WA (1984) Proteases in hormone production and metabolism. Adv Exp Med Biol 167:141–151

    Google Scholar 

  • Isaacson P, Jones DB, Millward-Sadler GH et al. (1981) Alpha-1-antitrypsin in human macrophages. J Clin Pathol 34:982–990

    Google Scholar 

  • Jacobsson K (1955) Studies on the trypsin and plasmin inhibitors in human blood serum. Scand J Clin Lab Invest 7 (suppl 14):55–102

    Google Scholar 

  • Jacquot-Armand Y, Guinand S (1967) Composition et structure de l'α2-macroglobuline isolée du serum de porc. Biochim Biophys Acta 133:289–300

    Google Scholar 

  • James K (1965) A study of alpha-2-macroglobulin homologues of various species. Immunology 8:55–61

    Google Scholar 

  • Janoff A, Carp H, Lee DK (1980) Inactivation of alpha-1-proteinase inhibitor and bronchial mucous proteinase inhibitor by cigarette smoke in vitro and in vivo. Bull Eur Physiopath Resp 16 (suppl):321–338

    Google Scholar 

  • Jenne DE, Tschopp J (1988) Granzymes, a family of serine proteases released from granules of cytolytic T-lymphocytes upon T cell receptor stimulation. Immunol Rev 103:53–71

    Google Scholar 

  • Jenne DE, Tschopp J (1991) Angiotensin II-forming heart chymase is a mast-cell-specific enzyme. Biochem J 276:567–568

    Google Scholar 

  • Jones JM, Creeth JM, Kekwick RA (1972) Thiol reduction of human α2-macroglobulin. The subunit structure. Biochem J 127:187–197

    Google Scholar 

  • Juneja RK, Gahne B (1980a) Two-dimensional gel electrophoresis of sheep plasma proteins: genetic polymorphism of an α1-proteinase inhibitor and a post-transferrin. Anim Blood Grps Biochem Genet 11:81–92

    Google Scholar 

  • Juneja RK, Gahne B (1980b) Two-dimensional gel electrophoresis of cattle plasma proteins: genetic polymorphism of an α1-protease inhibitor. Anim Blood Grps Biochem Genet 11:215–228

    Google Scholar 

  • Juneja RK, Gahne B (1981) Polymorphic serum prealbumin (Pa) of pig, identified as an al-protease inhibitor. Anim blood Grps Biochem Genet 12:47–51

    Google Scholar 

  • Juneja RK, Gahne B, Sandberg K (1979) Genetic polymorphism and close linkage of two α1-protease inhibitors in horse serum. Anim Blood Grps Biochem Genet 10:235–251

    Google Scholar 

  • Juneja RK, Reetz I, Christensen K et al. (1981a) Two dimensional gel electrophoresis of dog plasma proteins: genetic polymorphism of α1-protease inhibitor and another part albumin. Hereditas 95:225–233

    Google Scholar 

  • Juneja RK, Lundin LG, Gahne B (1981b) Genetic polymorphism of an α1-protease inhibitor in mink plasma. Hereditas 94:249–252

    Google Scholar 

  • Junker W, Hallström S, Redl H et al. (1988) Preliminary data on isolation of an elastase-like proteinase and its inhibitor from ovine neutrophil granulocytes. Biol Chem Hoppe-Seyler, 369 (suppl 5):63–68

    Google Scholar 

  • Kaup FJW, Drommer C, Iregui E et al. (1985) Morphological alterations of the alveolar region in horses with chronic obstructive pulmonary disease. In: Deegen E, Beadle RE (eds) Lung function and respiratory diseases in the horse. Hippiatrika Verlagsges, GmbH, Calw., pp 20–24

    Google Scholar 

  • Kido H, Fukutomi A, Katunuma N (1990) A novel membrane-bound serine esterase in human T4+ lymphocytes immunologically reactive with antibody inhibiting syncytia induces by HIV-1. Purification and characterization. J Biol Chem 265:21979–21985

    Google Scholar 

  • Kobayaski S, Nagasawa S (1974) Protease inhibitors in guinea pig serum. Isolation of two functionally different trypsin inhibitors from guinea pig serum. Biochim Biophys Acta 342:372–381

    Google Scholar 

  • Koj A, Hatton MCW, Wong LL et al. (1978) Isolation and partial characterization of rabbit plasma α1-antitrypsin. Biochem J 169:589–596

    Google Scholar 

  • Krugliak L, Meyer P, Taylor C (1986) The distribution of lysozyme, alpha-1-antitrypsin and alpha-1-antichymotrypsin in normal hematopoietic cells and in myeloid leukemias. Am J Hematol 21:99–109

    Google Scholar 

  • Kuhen L, Rutschmann M, Dahlmann B et al. (1984) Proteinase inhibitors in rat serum. Biochem J 218:935–959

    Google Scholar 

  • Kuhn C, Slodkowska J, Smith T et al. (1980) The tissue response to exogeneous elastase. Bull Eur Physiopathol Resp 16 (suppl):127–137

    Google Scholar 

  • Kurachi K, Chandra T, Friezner-Degan SJ et al. (1981) Cloning and sequences of cDNA coding for α1-antitrypsin. Proc Natl Acad Sci USA 78:6826–6830

    Google Scholar 

  • Laegreid WW, Breeze RG, Counts DF (1982) Isolation and some properties of equine α1-antitrypsin. Int J Biochem 14:327–334

    Google Scholar 

  • Lab T, Vihaz M, Dubin A et al. (1987) Horse α2-macroglobulin. Circular dichroism studies of conformational changes upon reaction with proteinases and methylamine. Biol Chem Hoppe-Seyler 368:487–492

    Google Scholar 

  • Laurell CB, Eriksson S (1963) The electrophoresic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 15:132–140

    Google Scholar 

  • Laurell CB, Jeppsson JO (1975) In: Putman FW (ed) The plasma proteins: structure, function and genetic control, Vol. 1, 2nd edn. Academic Press, New York, pp 229–264

    Google Scholar 

  • Laverage M, Raynand M (1970) Preparation et propriétés de alpha-2-macroglobulin de cheval. Ann Inst Pasteur 119:27–49

    Google Scholar 

  • Lehninger AL (1987) Principles of biochemistry. Worth, New York, pp 28–29

    Google Scholar 

  • Lowell FC (1964) Observation of heaves. An asthma-like syndrome in the horse. J Allergy 35:322–330

    Google Scholar 

  • Matthews AG (1979) Identification and characterization of the major antiproteases in equine serum and an investigation of their role in the onset of Chronic Obstructive Pulmonary Disease (COPD). Equine Vet J 11:177–182

    Google Scholar 

  • McMahon MJ, Bowen M, Mayer AD et al. (1984) Relation of α2-macroglobulin and other antiproteases to clinical features of acute pancreatitis. Am J Surg 147:164–170

    Google Scholar 

  • Mehl JW, O'Connell W, De Groot J (1964) Macroglobulin from human plasma which forms an enzymatically active component with trypsin. Science 154:821–822

    Google Scholar 

  • Minuich M, Kueppers F, James H (1984) Alpha-1-antitrypsin from mouse serum: isolation and characterization. Comp Biochem Physiol 7813:413–419

    Google Scholar 

  • Mistry R, Snashall PD, Totty N et al. (1991) Isolation and characterization of sheep α1-proteinase inhibitor. Biochem J 273:685–690

    Google Scholar 

  • Mosher DF, Wing DA (1976) Synthesis and secretion of α2-macro-globulin by cultural human fibroblasts. J Exp Med 143:462–467

    Google Scholar 

  • Movat HZ (1985) Inflammatory reaction. Elsevier, Amsterdam, pp 294–302

    Google Scholar 

  • Nagasawa S, Sugihaza H, Han BH et al. (1970) Studies on α2-macroglobulin in bovine plasma. J Biochem (Tokyo) 67:809–819

    Google Scholar 

  • Ohlsson K (1971) Elimination of 1251-trypsin-α2-macroglobulin complexes from reticulcendothelial cells in dog. Acta Physiol Scand 81:269–272

    Google Scholar 

  • Okubo H, Miyanaga O, Nagans M et al. (1981) Purification and immunological determination of α2-macroglobulin in serum from injured rats. Biochim Biophys Acta 668:257–267

    Google Scholar 

  • Ondetti MA, Cushman BW (1982) Enzymes of the renin-angiotensin system and their inhibitors. Ann Rev Biochem 51:283–308

    Google Scholar 

  • Patterson SD (1991) Mammalian α1-antitrypsins: comparative biochemistry and genetics of the major plasma serpin. Comp Biochem Physiol 10013:439–454

    Google Scholar 

  • Patterson SD, Bell K (1987) ISO-DALT characterisation of 12 ‘new’ equine plasma protease inhibitor (Pi) alleles. Anim Genet 18:167–180

    Google Scholar 

  • Patterson SD, Bell K (1989) Application of an affinity electrophoretic and in situ oxidation method to the study of the equine protease inhibitory proteins. Electrophoresis 10:40–45

    Google Scholar 

  • Pellegrini A, von Fellenberg R (1980) Fractionation and partial characterization of al-protease isoinhibitors of horse. Biochim Biophys Acta 616:351–361

    Google Scholar 

  • Pelligrini A, Zweifel H-R, von Fellenberg R (1983) Isolation and characterization of horse α2-macroglobulin protease inhibit. Int J Biochem 15:1003–1011

    Google Scholar 

  • Pellegrini A, Haegeli G, Fretz D et al. (1984) Natural protease inhibitors: qualitative and quantitative assay by fibrinogen electrophoresis. Anal Biochem 138:335–339

    Google Scholar 

  • Pellegrini A, Zweifel H-R, von Fellenberg R (1985) Horse alprotease inhibitors: relationship between the slow (S) and fast (F) isoforms. Int J Biochem 17:463–469

    Google Scholar 

  • Pellegrini A, Haegeli G, von Fellenberg R (1986) Resistence of horse α1-proteinase inhibitors to perchloric acid denaturation and a simplified purification procedure resulting therefrom. Biochim Biophys Acta 874:144–149

    Google Scholar 

  • Pollitt CC, Bell K (1983) Characterization of the α1-protease inhibitor system in thoroughbred horse plasma by horizontal two dimensional (ISO-DALT) electrophoresis. 2. protease inhibition. Anim Blood Grp Biochem Genet 14:107–118

    Google Scholar 

  • Potempa J, Wunderlich JK, Travis J (1991) Comparative properties of three functionally different but structurally related serpin variants from horse plasma. Biochem J 274:465–471

    Google Scholar 

  • Preller J (1986) Bestimmung von Immunglobulinen and Proteaseinhibition in Blut and Bronchialsekret. Inauguraldissertation, Zürich, pp 36–45

    Google Scholar 

  • Pritchett TJ, Paulson JC (1989) Basis for the potent inhibiton of influenza virus infection by equine and guinea pig α2-macroglobulin. J Biol Chem 264:9850–9858

    Google Scholar 

  • Quigley JP, Armstrong PB (1985) A homologue of α2-macroglobulin purified from hemolymph of horseshoe crabLimulus polyphemus. J Biol Chem 260:12715–12719

    Google Scholar 

  • Rogers GN, Pritchett TJ, Lane JL et al. (1983) Differential sensitivity of human, avian and equine influenza viruses to a glycoprotein inhibitor of infection: selection of receptor specific variants. Virology 131:394–408

    Google Scholar 

  • Saito A, Sinohara H (1991) Cloning and sequencing of cDNA coding for rabbit α1-antiproteinase F: amino acid sequence comparison of α1-antiproteinases of six mammals. J Biochem 109:158–162

    Google Scholar 

  • Schnizlein CT, Bice DE, Tuttle WC (1980) Isolation of canine alantitrypsin: its interaction with pulmonary macrophages. Exp Mol Pathol 33:74–83

    Google Scholar 

  • Schramm HJ, Schrammm W (1982) Computer averaging of single molecules of α2 macroglobulin and the α2-macroglobulin-trypsin complex. Hoppe-Seyler's Z Physiol Chem 363:803–812

    Google Scholar 

  • Schultze HE, Göllner I, Heide K et al. (1955) Zur Kenntnis der alphaGlobuline des menschlichen Normalserum. Z Naturforsch B 10:463–473

    Google Scholar 

  • Sinha U, Sinha S, Janoff A (1988) Characterization of sheep α1-proteinase inhibitor. Am Rev Respir Dis 137:558–563

    Google Scholar 

  • Sottrup-Jensen L, Stepanik TM, Wierzbicki DM et al. (1983) In: Feinman RD (ed) Chemistry and Biology of α2-macroglobulin. Ann NY Acad Sci 421:41–60

    Google Scholar 

  • Sottrup-Jensen L, Borth W, Hall M et al. (1990) Sequence similarity between α2-macroglobulin from horseshoe crab.Limulus polyphemus, and proteins of the α2-macroglobulin family from mammals. Comp Biochem Physiol 9613:621–625

    Google Scholar 

  • Starkey PM, Barrett AJ (1977) In: Barrett AJ (ed) Proteinase in mammalian cells and tissues. North Holland, Amsterdam, pp 663–693

    Google Scholar 

  • Suzuki Y, Yoshida K, Honda E et al. (1991) Molecular cloning and sequence analysis of cDNA coding for guinea pig α1-antiproteinases S and F and contrapsin. J Biol Chem 266:928–932

    Google Scholar 

  • Taylor JC, Mittman C (1987) Pulmonary emphysema and protolysis: 1986. Academic Press, New York

    Google Scholar 

  • Travis J, Salvensen GS (1983) Human plasma proteinase inhibitors. Annu Rev Biochem 52:655–709

    Google Scholar 

  • Turk V, Brzin J, Lenarcic B et al. (1986) Human stefin and cystatins: their properties and structural relationship. In: Turk V (ed) Cysteine proteinases and their inhibitors. Walter de Gruyter, Berlin, pp 429–441

    Google Scholar 

  • Van Furth R, Kramps JA, Diesselhof-Den Dulk MMC (1983) Synthesis of al-antitrypsin by human monocytes. Clin Exp Immunol 51:551–557

    Google Scholar 

  • von Fellenberg R (1978) Elektrophoretische Analyse der Peroteaseinhibitoren von Pferdeserum. Schweiz Arch Tierheilkd 120:631–642

    Google Scholar 

  • von Fellenberg R (1987) Proteasen und Proteaseninhibitoren von möglicher klinischer Relevanz bei der COPD des Pferdes. Tieräztl Praxis 15:399–407

    Google Scholar 

  • von Fellenberg R, Kohler L, Grünig G et al. (1985) Comparison of neutrophil elastases and of neutrophil protease inhibitors in the horse and man. Am J Vet Res 46:2480–2484

    Google Scholar 

  • Wallenius G, Trautman R, Kunkel HG et al. (1957) Ultracentrifuged studies of major non-lipid electrophoretic components of normal human serum. J Biol Chem 225:253–267

    Google Scholar 

  • White RR, Janoff A, Godfrey HP (1980) Secretion of alpha-2-macroglobulin by human alveolar macrophages. Am Rev Resp Dis 121:418

    Google Scholar 

  • White RR, Habicht GS, Godfrey HP et al. (1981) Secretion of elastase and α2-macroglobulin by cultured murine peritoneal macrophages: studies on their interaction. J Lab Clin Med 97:718–729

    Google Scholar 

  • Wimmer E (1989) Proteolytic processing in viral repliction. In: Kräusslich HG, Orozolan S, Wimmer E (eds) Viral proteinase as target for chemotherapy. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–15

    Google Scholar 

  • Winder NC, von Fellenberg R (1987) Chronic small airway disease in horses slaughtered in Switzerland. Schweiz Arch Tierheilkd 129:585–593

    Google Scholar 

  • Winder NC, Pellegrini A, von Fellenberg R (1989a) Immunohistochemical localisation of α1-protease inhibitor in the horse. Res Vet Sci 46:354–357

    Google Scholar 

  • Winder NC, Pellegrini A, von Fellenberg R (1989b) Immunohistochemical localization of α2-macroglobulin in the horse. Res Vet Sci 47:393–396

    Google Scholar 

  • Winzap B (1987) Serumproteaseinhibitoren bei chronisch-obstruktiv lungenkranken Pferden. Diss. Zürich, pp 26–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegrini, A. Proteinase inhibitors in animal blood with special regard to equine pulmonary disease: α1-proteinase inhibitor and α2-macroglobulin. Comp Haematol Int 4, 121–129 (1994). https://doi.org/10.1007/BF00798351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00798351

Keywords

Navigation