Journal of comparative physiology

, Volume 129, Issue 2, pp 97–103 | Cite as

Reversed bohr and root shifts in hemocyanin of the marine prosobranch,Buccinum undatum: Adaptations to a periodically hypoxic habitat

  • Ole Brix
  • Gunnar Lykkeboe
  • Kjell Johansen


Oxygen binding properties of the hemocyanin-containing blood ofBuccinum undatum were examined in vitro and in vivo under normoxic (\(P_{W,O_2 } \)≈150 mmHg) and hypoxic (\(P_{W,O_2 } \)≦50 mmHg) conditions at 10°C. Blood pH and\(P_{O_2 } \) showed a decrease in vivo under hypoxic conditions. Oxygen uptake at high water\(P_{O_2 } \), was about 18 ml O2/kg·h (wet weight) and the critical oxygen tension between 25 and 50 mm Hg. In vitro the O2 binding to hemocyanin showedn-values independent of pH, while both O2 affinity and oxygen carrying capacity were strongly pH dependent. Oxygen affinity increased below pH=8.1 and thus showed a pronounced reversed Bohr shift in the physiological pH range (7.5<pH<8.1). The oxygen carrying capacity similarly increased markedly with falling pH in the physiological pH range (reversed Root shift). Astrup titration curves showed a metabolic and respiratory acidosis under hypoxic conditions (\(P_{W,O_2 } \)≦50 mm Hg). The role of hemocyanin in the transport of oxygen in relation to ambient O2 availability is discussed.


Oxygen Titration Oxygen Uptake Hypoxic Condition Oxygen Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bert, P.: Sur la Physiologie de la Seiche (Sepia officinalis L.). C. R. Acad. Sci. Paris65, 300–303 (1867)Google Scholar
  2. Dejours, P.: Principles of comparative respuratory physiology. Amsterdam, Oxford, North-Holland Publishing Company 1975Google Scholar
  3. Florkin, M.: La Function Respiratoire du “Milieu Intérieur” dans la Série Animale. Ann. Physiol. Physiochim. Biol.10, 599–694 (1934)Google Scholar
  4. Ghiretti, F.: Respiration. In: Physiology of Mollusca, Vol. II Wilbur, K.M., Yonge, C.M. (eds.), pp. 175–208. New York: Academic Press 1966Google Scholar
  5. Hogben, L.T., Pinhey, K.F.: A comparison between the dissociation of the hemocyanins ofHelix and Crustacea. Brit. J. Exp. Biol.4, 203–214 (1926)Google Scholar
  6. Hogben, L.T., Pinhey, K.F.: Some observations on the hemocyanin ofLimulus. J. Exp. Biol. Lond.5, 55–65 (1927)Google Scholar
  7. Johansen, K., Petersen, J.A.: Respiratory adaptations inLimulus polyphemus (L.). In: The Belle W. Baruch library in marine science; Number 3: Physiological ecology of estuarine organisms. Vernberg, F.J. (ed.), pp. 129–145. University of South Carolina Press 1975Google Scholar
  8. Lenfant, C., Johansen, K.: Gas transport by hemocyanin-containing blood of the cephalopodOctopus dofleini. Am. J. Physiol.209, 991–998 (1965)Google Scholar
  9. Limfjordsrapporten: Bo Barker Jørgensen: Sediments svovlkredsløb og ilt balance i Limfjordens østlige bredninger. Rapport til Limfjordskomiteen, November 1975Google Scholar
  10. Lykkeboe, G., Johansen, K.: Functional properties of hemoglobins in the teleostTilapia grahami. J. comp. Physiol.104, 1–11 (1975)Google Scholar
  11. Mangum, C.P., Freadman, M.A., Johansen, K.: The quantitative role of hemocyanin in aerobic respiration ofLimulus polyphemus. J. Exp. Zool.191, 279–285 (1975)Google Scholar
  12. Mangum, C.P., Van Winkle, W.: Responses of aquatic invertebrates to declining oxygen conditions. Am. Zool.13, 529–541 (1973)Google Scholar
  13. Mangum, C.P., Lykkeboe, G.: The influence of inorganic ions and pH on oxygenation properties of the bloods in the gastropod molluscBusycon canaliculatum. (in preparation) (1978)Google Scholar
  14. Redfield, A.C., Coolidge, T., Hurd, A.L.: The transport of oxygen and carbon dioxide by some bloods containing haemocyanin. J. Biol. Chem.69, 475–508 (1926)Google Scholar
  15. Redfield, A.C., Ingalls, E.N.: The effects of salts and hydrogen-ion concentration upon the oxygen dissociation constant of the haemocyanin ofBusycon canaliculatum. J. Cell. Comp. Physiol.1, 253–275 (1932)Google Scholar
  16. Redfield, A.C., Ingalls, E.N.: The oxygen dissociation curves of some bloods containing hemocyanin. J. Cell. Comp. Physiol.3, 169–202 (1933)Google Scholar
  17. Redmond, J.R.: The respiratory function of hemocyanin. In: Physiology and biochemistry of hemocyanins. Ghiretti, F. (ed.), pp. 5–23. New York: Academic Press 1968Google Scholar
  18. Riggs, A.: Functional properties of hemoglobin. Physiol. Rev.45, 619–673 (1965)Google Scholar
  19. Root, R.W.: The respiratory function of the blood of marine fishes Biol. Bull.61, 427–456 (1931)Google Scholar
  20. Slyke, D.D. van, Plazin, J.: Micromanometric Analyses. Baltimore: Williams and Wilkins 1961Google Scholar
  21. Truchot, J.P.: Carbon dioxide combining properties of the blood of the shore crabCarcinus maenas (L.): Carbon dioxide solubility coefficient and carbonic acid dissociation constant. J. Exp. Biol.64, 45–57 (1976)Google Scholar
  22. Truchot, J.P.: Carbon dioxide combining properties of the blood of the shore crabCarcinus maenas (L.): CO2-dissociation curves and Haldane effect. J. comp. Physiol.112, 283–293 (1976)Google Scholar
  23. Wolvekamp, H.P., Kersten, H.J.: Über die Sauerstoffdissoziationskurve vom Blute der Weinbergschnecke (Helix pomatia). Z. vergl. Physiol.20, 702–713 (1934)Google Scholar
  24. Zebe, E.: Anaerober Stoffwechsel bei wirbellosen Tieren. Rheinisch-Westfälische Akademie der Wissenschaften, 51–73. Vorträge N269. Opladen, Wiesbaden: Westdeutscher Verlag 1977Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ole Brix
    • 1
  • Gunnar Lykkeboe
    • 1
  • Kjell Johansen
    • 1
  1. 1.Department of ZoophysiologyUniversity of AarhusAarhus CDenmark

Personalised recommendations