Skip to main content
Log in

Energy-based methods of solving technological problems of plasticity of porous materials. I. Deformation of a porous material in a rigid cylindrical die

  • Theory and Technology of the Component Formation Process
  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. R. G. Green, “Theory of plasticity of porous solids,” in: Mechanics [Russian translation], Vol. 4, Mir, Moscow (1973), pp. 109–120.

    Google Scholar 

  2. G. L. Petrosyan, “Theory of plasticity of porous solids,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 5, 10–13 (1977).

    Google Scholar 

  3. I. F. Martynova and M. B. Shtern, “An equation for the plasticity of a porous solid allowing for true strains of the matrix material,” Poroshk. Metall., No. 1, 23–29 (1978).

    Google Scholar 

  4. V. V. Skorokhod and L. I. Tuchinskii, “Condition of plasticity of porous bodies,” Poroshk. Metall., No. 11, 83–87 (1978).

    Google Scholar 

  5. M. B. Shtern, “Determining equations for compressible plastic porous solids,” Poroshk. Metall., No. 4, 17–23 (1981).

    Google Scholar 

  6. V. M. Segal, “A variant of the theory of plasticity of a porous solid,” Prikl. Mekh.,17, No. 3, 44–49 (1981).

    Google Scholar 

  7. A. M. Laptev, “Application of the theory of plasticity to the calculation of processes of plastic working of sintered blanks,” Proceedings of the All-Union Conference on the Investigation and Development of Theoretical Problems in the Field of Powder Metallurgy and Protective Coatings (Minsk, May 24–26, 1983) [in Russian], Vol. 2, Belorussk. Nauchno-Issled. Inst. Nauchn. Tekh. Inform., Minsk (1983), pp. 111–117.

    Google Scholar 

  8. V. M. Segal, “Plastic deformation of porous solids,” Plast. Deform. Legkikh Spets. Splavov, No. 2, 37–42 (1982).

    Google Scholar 

  9. A. M. Laptev, “Working of a porous metal in a closed die,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 7, 89–94 (1979).

    Google Scholar 

  10. M. B. Shtern, G. G. Serdyuk, L. A. Maksimenko, et al., Phenomenological Theories of Powder Pressing [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  11. V. S. Smirnov and A. K. Grigor'ev, Use of Computers for the Calculation of Rolling Parameters [in Russian], Metallurgiya, Moscow (1979).

    Google Scholar 

  12. A. Freidental and H. Geiringer, Mathematical Theory of an Inelastic Continuum [Russian translation], Fizmatizdat, Moscow (1962).

    Google Scholar 

  13. A. K. Grigor'ev and A. I. Rudskoi, “Deformation, densification, and work-hardening of porous sintered alloys,” Tr. Leningr. Politekh. Inst., No. 404, 94–97 (1985).

    Google Scholar 

  14. H. A. Kuhn, “Deformation processing of sintered powder materials,” in: Powder Metallurgy Processing, New Techniques and Analysis, Vol. 4, New York (1978), pp. 99–138.

    Google Scholar 

  15. N. N. Malinin, Applied Theory of Plasticity and Creep [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 5(305), pp. 6–10, May, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigor'ev, A.K., Rudskoi, A.I. Energy-based methods of solving technological problems of plasticity of porous materials. I. Deformation of a porous material in a rigid cylindrical die. Powder Metall Met Ceram 27, 339–343 (1988). https://doi.org/10.1007/BF00797674

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00797674

Keywords

Navigation