Soviet Powder Metallurgy and Metal Ceramics

, Volume 18, Issue 7, pp 481–487 | Cite as

Diffusional processes in the welding of some refractory carbides to metals

  • A. L. Borisova
  • O. V. Evtushenko
Test Methods and Properties of Materials


  1. 1.

    A thermodynamic approach may be adopted for assessing the possibility of a chemical reaction occurring during the welding of unlike materials; in the case of refractory compounds with wide ranges of homogeneity it is necessary to take into account the effect of composition in the homogeneity range on their thermodynamic functions.

  2. 2.

    The extent of the third stage in the diffusion welding of carbides to carbides and carbides to metals is limited by the slowest link of the process, viz., self-diffusion of metal atoms in the crystal lattices of the carbides.

  3. 3.

    In the diffusion welding of refractory metals and carbides optimum welding temperatures monotonically rise with increasing degree of localization of valence electrons in the metallic lattices (metallic sublattices in the case of carbides).



Carbide Welding Crystal Lattice Diffusional Process Metal Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Kirpatyi and V. R. Ryabov, “The Third All-Union Conference on the Welding of Dissimilar Metals,” Avtomat. Svarka, No. 6, 79–80 (1967).Google Scholar
  2. 2.
    A. L. Borisova and B. G. Gubenko, “Adhesional properties of refractory compound coatings on metals and alloys,” in: Protective Coatings on Metals [in Russian], No. 9, Naukova Dumka, Kiev (1975), pp. 143–150.Google Scholar
  3. 3.
    M. Kh. Shorshov, “Physical and chemical principles of various methods of joining of dissimilar materials,” in: Welding 1965 [in Russian], Vses. Inst. Nauchn. Tekh. Inform., Moscow (1966), pp. 5–30.Google Scholar
  4. 4.
    Yu. L. Krasulin, “Kinetics and mechanism of the solid-phase joining of semicounductors to metals,” Author's Abstract of Doctoral Dissertation, Inst. Metall, im. A. A. Baikova, Akad. Nauk SSSR, Moscow (1968).Google Scholar
  5. 5.
    B. S. Kasatkin, G. N. Korab, et al., “Characteristics of the plastic deformation accompanying welding without incipient melting,” Svarochn. Proizv., No. 7, 3–5 (1966).Google Scholar
  6. 6.
    B. S. Kasatkin and G. N. Korab, “Joint formation in welding without incipient melting,” Avtomat. Svarka, No. 4, 33–38 (1967).Google Scholar
  7. 7.
    A. L. Borisova and Yu. S. Borisov, “A thermodynamic evaluation of the effect of nonstoichiometry of compounds on the course of their solid-phase reactions,” Poroshk. Metall., No. 6, 42–50 (1977).Google Scholar
  8. 8.
    V. S. Eremeev, A. L. Panov, et al., “Diffusion of carbon from uranium carbide into molybdenum and tungsten,” Thermodynamics,2, 161–172 (1966).Google Scholar
  9. 9.
    R. A. Andrievskii, V. S. Eremeev, V. N. Zagryazkin, et al., “Diffusion of carbon in carbides of Group IV–VI transition metals,” Izv. Akad. Nauk SSSR, Neorg. Mater., No. 12, 2158–2161 (1967).Google Scholar
  10. 10.
    V. S. Eremeev, P. L. Gruzin, and A. S. Panov, “Reactive diffusion in the W-C and Mo-C systems,” in: The Isotope Indicator Method in Scientific-Research and Industrial Production [in Russian], Atomizdat, Moscow (1971), pp. 60–65.Google Scholar
  11. 11.
    J. Becker and E. Becker, “Reaction of oxygen with pure tungsten containing carbon,” J. Appl. Phys.,32, 411–423 (1961).Google Scholar
  12. 12.
    L. N. Larikov, V. M. Fal'ehenko, Yu. A. Gretskii, et al., “Diffusion processes in the welding of metals,” in: Diffusion Processes in Metals — Metal Physics [in Russian], No. 25, Naukova Dumka, Kiev (1968), pp. 5–37.Google Scholar
  13. 13.
    S. Sarian, “Diffusion of Ti in TiC,” J. Appl. Phys.,40, No. 9, 3515–3520 (1969).Google Scholar
  14. 14.
    V. N. Zagryazkin, “Mechanism of diffusion in the monocarbides of transition metals,” Fiz. Met. Metalloved.,28, No. 2, 292–297 (1969).Google Scholar
  15. 15.
    R. A. Andrievskii, V. V. Klimenko, and Yu. F. Khromov, “Self-diffusion of carbon in carbides of Group IV and V transition metals,” Fiz. Met. Metalloved.,28, No. 2, 298 (1969).Google Scholar
  16. 16.
    G. Ya. Meshcheryakov and V. N. Zagryazkin, “Self-diffusion of carbon in the monocarbides of transition metals,” Fiz. Met. Metalloved.,32, No. 4, 883–885 (1971).Google Scholar
  17. 17.
    W. Brizes, Z. Cadoff, and J. Tobin, “Diffusion in niobium carbides,” J. Nucl. Mater.,20, No. 11, 57–61 (1966).Google Scholar
  18. 18.
    P. V. Gel'd and V. D. Lyubimov, “Energies of activation for mobility of Nb and C in metallic niobium and its carbides,” Poroshk. Metall., No. 4, 76–78 (1963).Google Scholar
  19. 19.
    A. V. Shovensin et al., “Some characteristics of the diffusion of carbon in molybdenum carbide,” Poroshk. Metall., No. 11, 46–51 (1966).Google Scholar
  20. 20.
    C. Buhsmer and P. Crayton, “Carbon self-diffusion in tungsten carbide,” J. Mater. Sci.,6, No. 7 981–988 (1971).Google Scholar
  21. 21.
    L. M. Baskin, V. I. Tret'yakov, and I. I. Chaporova, “Diffusion of tungsten in tungsten, tantalum and titanium monocarbides and in TiC-WC and TiC-WC-TaC solid solutions,” Fiz. Met. Metalloved.,14, No. 3, 422–429 (1961).Google Scholar
  22. 22.
    B. Allen, “The surface self-diffusion of Mo, Cb (Nb), and Re,” Metall. Trans.,3, No. 9, 2544–2547 (1972).Google Scholar
  23. 23.
    D. M. Pautov and I. M. Sokol'skaya, “Study of the surface self-diffusion of tantalum by autoelectron microscopy,” Fiz. Tverd. Tela,10, No. 8, 2473–2479 (1968).Google Scholar
  24. 24.
    R. A. Andrievskii and K. P. Gurov, “Self-diffusion in interstitial phases,” Fiz. Met. Metalloved.,26, No.5, 818–822 (1968).Google Scholar
  25. 25.
    I. Ya. Dekhtyar, “Atomic interaction in alloys based on Group IV elements,” Dokl. Akad. Nauk SSSR,85, No. 3, 583–586 (1952).Google Scholar
  26. 26.
    N. Engel, “Electron concentration and diffusion,” in: Diffusion of bcc Metals [Russian translation], Metallurgiya, Moscow (1969), pp. 93–100.Google Scholar
  27. 27.
    B. D. Sharma and S. P. Ray, “Correlation of self-diffusion data with the Engel-Brewer theories of metals and alloys,” Trans. Metall. Soc. AIME,245, 2355–2357 (1969).Google Scholar
  28. 28.
    G. V. Samsonov, “Development of theories concerning the electronic mechanism of diffusion processes in metals and alloys,” Fiz.-Khim. Mekh. Mater.,4, No. 5, 502–506 (1968).Google Scholar
  29. 29.
    G. V. Samsonov, I. F. Pryadko, and L. F. Pryadko, Configurational Model of Matter [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  30. 30.
    G. S. Upadhyaya, “Self diffusion data for metals and stable electronic configuration model,” Metall. Trans.,2, No. 3, 912–913 (1971).Google Scholar
  31. 31.
    G. V. Samsonov, G. Sh. Upadkhaya, and V. S. Neshpor, Physical Materials Science of Carbides [in Russian], Naukova Dumka, Kiev (1974).Google Scholar
  32. 32.
    N. F. Kazakov, Diffusion Welding of Materials [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  33. 33.
    L. N. Larikov et al., “Self-diffusion in mono- and polycrystalline tungsten,” in: Properties and Applications of Heat Resisting Alloys [in Russian], Nauka, Moscow (1966), pp. 28–30.Google Scholar
  34. 34.
    G. V. Samsonov (editor), Physicochemical Properties of the Elements [in Russian], Naukova Dumka, Kiev (1965).Google Scholar
  35. 35.
    V. D. Lyubimov, P. V. Gel'd, and G. P. Shveikin, “Self-diffusion of niobium in single crystals and fused specimens,” Izv. Akad. Nauk SSSR, Metall. Gornoe Delo, No. 5, 137–142 (1964).Google Scholar
  36. 36.
    L. V. Pavlinov and V. N. Bykov, “Self-diffusion in molybdenum,” Fiz. Met. Metalloved.,18, No. 3, 459–461 (1964).Google Scholar
  37. 37.
    J. Mardock, T. Lundy, and E. Stansbury, “Diffusion of Ti-V in Ti,” Acta Metall.,12, No. 9, 1038–1041 (1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • A. L. Borisova
    • 1
  • O. V. Evtushenko
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations