Skip to main content
Log in

An X-ray diffraction investigation of the reaction between molybdenum powder and manganese additions during sintering

  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

Conclusions

  1. 1.

    Diffractograms characterizing the low-temperature sintering stage exhibit a marked distortion of the Kα doublet of molybdenum, which is indicative of appreciable reaction between the manganese and the molybdenum.

  2. 2.

    After solid-phase sintering the Mo-Mn system is characterized by marked concentration heterogeneities. Increasing the duration of the sintering does not lead to full homogeneity in the system.

  3. 3.

    The Mo-Mn system is more homogeneous after liquid-phase (1300°C) than after solidphase (1200°C) sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. N. V. Ageev, N. N. Bokareva, Z. A. Guts, et al., “Reactions between interstitial impurities and iron-group metals in dilute molybdenum-base solid solutions in the as-cast condition,” in: Chemistry of Metallic Alloys [in Russian], Nauka, Moscow (1975), pp. 114–122.

    Google Scholar 

  2. E. M. Savitskii and K. B. Povarova, “Tungsten alloys,” in: Nonferrous Metallurgy — Scientific Exploration and Future Prospects [in Russian], Nauka, Moscow (1976), pp. 188–198.

    Google Scholar 

  3. I. I. Kornilov, “Redefinition of some problems in the physicochemical theory of heat resistance of alloys,” in: Alloying and Properties of Heat-Resisting Alloys [in Russian], Nauka, Moscow (1971), pp. 3–13.

    Google Scholar 

  4. R. Krumphold, “Grain boundary precipitation in molybdenum and tungsten and its effect on some properties of these metals,” in: New Refractory Metallic Materials [Russian translation], Mir, Moscow (1971), pp. 55–75.

    Google Scholar 

  5. B. A. Movchan, “Structural conditions for maximum plasticity in two-phase metallic materials,” Dokl. Akad. Nauk SSSR,223, No. 2, 332–335 (1975).

    Google Scholar 

  6. V. N. Statkevich and V. G. Tkachenko, “Effect of structure on the deformation and rupture characteristics of a molybdenum-carbon alloy,” Fiz. Met. Metalloved.,42, No. 6, 1247–1256 (1976).

    Google Scholar 

  7. V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  8. V. K. Grigorovich, Electronic Structure and Thermodynamics of Ferrous Alloys [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  9. M. Hansen and K. P. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1957).

    Google Scholar 

  10. D. M. Kheiker and L. S. Zevin, X-Ray Diffractometry [in Russian], Izd-vo Fiz.-Mat. Lit., Moscow (1963).

    Google Scholar 

  11. A. A. Rusakov, X-Ray Diffraction Investigation of Metals [in Russian], Atomizdat, Moscow (1977).

    Google Scholar 

  12. T. S. Lundy, J. I. Federer, et al., “A summary of ORNL work on diffusion in β-zirconium, vanadium, columbium, and tantalum;” C. S. Hartley, J. E. Steedly, and L. D. Parsons, “Binary interdiffusion in bcc transition metal systems,” in: Diffusion in Body-Centered Cubic Metals, Am. Soc. Met., Ohio (1965), pp. 35–49 and 51–75.

    Google Scholar 

  13. N. F. Sotskaya and S. D. Vangengeim, “Distribution of a dissolved component in dilute polycrystalline iron-base solid solutions,” Izv. Akad. Nauk SSSR, Met., No. 1, 236–242 (1976).

    Google Scholar 

  14. V. Yu. Kameneva and S. D. Vangengeim, “Electronic structure of a dilute copper solid solution and intergranular internal adsorption,” Izv. Akad. Nauk SSSR, Met., No. 4, 122–126 (1976).

    Google Scholar 

  15. J. Askill, “Tracer-diffusion studies in molybdenum,” in: Diffusion in Body-Centered Cubic Metals, Am. Soc. Met., Ohio (1965), pp. 247–252.

    Google Scholar 

  16. S. D. Gertsriken and I. Ya. Dekhtyar, Solid-Phase Diffusion in Metals and Alloys [in Russian], Izd-vo Fiz.-Mat. Lit., Moscow (1960).

    Google Scholar 

  17. B. Ya. Lyubov, “Some relaxation processes in metals and alloys linked with their defective structure,” Izv. Akad. Nauk SSSR, Met., No. 5, 180–191 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 10(190), pp. 45–49, October, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogomolov, A.M., Kim, Y.S. An X-ray diffraction investigation of the reaction between molybdenum powder and manganese additions during sintering. Powder Metall Met Ceram 17, 772–776 (1978). https://doi.org/10.1007/BF00796364

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00796364

Keywords

Navigation