Skip to main content
Log in

Tendencies in creating composite materials for equipping friction assemblies

  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. I. M. Fedorchenko, “Modern ideas about the mechanism of friction and wear and the main tendencies in development of composite materials for tribological purposes,” Poroshk. Metall., No. 4, 53–66 (1979).

    Google Scholar 

  2. V. E. Oliker, “Physicochemical evaluation of the compatibility of materials in tribological pairs,” Poroshk. Metall., No. 2, 65–71 (1989).

    Google Scholar 

  3. I. M. Fedorchenko, V. T. Bondar', N. G. Baranov, et al., “Effect of boron nitride content on formation of an antiwear layer in powder antifriction materials,” Trenie Iznos,9, No. 5, 930–935 (1988).

    Google Scholar 

  4. L. I. Dyachenko, V. N. Paderno, N. G. Baranov, et al., “Substructure of the friction surface of copper and copper-graphite materials,” Poroshk. Metall., No. 12, 66–71 (1987).

    Google Scholar 

  5. N. G. Baranov and V. N. Paderno, “Study of the mechanism for forming surface films with friction of copper-graphite materials,” Trenie Iznos,10, No. 4, 662–667 (1989).

    Google Scholar 

  6. V. N. Podgarkova, Lubrication with Friction and Cutting of Metals [in Russian], Ivanov. Khim.-Tekh. Inst., Ivanovo (1986), pp. 33–39.

    Google Scholar 

  7. C. A. Brookes and A. B. Parry, “Some fundamental aspects of the mechanical wear of hard ceramic crystal due to sliding,” Mater. Sci. Eng. A,105, Nos. 1–2, 143–150 (1988).

    Google Scholar 

  8. Yu. G. Gogotsii, V. S. Koval'chuk, V. V. Zametailo, et al., “Interaction of ceramics with steel during friction,” Trenie Iznos,10, No. 2, 295–301 (1989).

    Google Scholar 

  9. M. Kuno, R. B. Waterhouse, and B. R. Pearson, “Fretting wear in sintered alumina and tungsten carbide cermetmetal couples,” Wear. Meter. Int. Conf. (Houston, Apr. 1987), Vol. 1, New York (1987), pp. 371–379.

    Google Scholar 

  10. H.-G. Feller and U. Weinstroth, “Gleitverschleiss bei oszillerenden Belastung an Metall-Keramik-Systemen,” Z. Metallkunde,80, No. 5, 352–358 (1989).

    Google Scholar 

  11. I. M. Fedorchenko, V. T. Bondar', Yu. F. Shevchuk, et al., “Effect of calcium fluoride on the formation of an antiwear layer in powder antifriction materials,” Trenie Iznos,10, No. 1, 97–103 (1989).

    Google Scholar 

  12. E. G. Osipova, V. S. Panov, V. L. Memelov, and L. M. Sergeeva, “Tribological and mechanical properties of tribological materials based on bronze with a solid WS2 lubricant,” in: New Powder Materials: Proc. 15th All-Union Conf. [in Russian], (Kiev, October 19–22, 1985), Kiev (1986), pp. 67–71.

  13. Z. T. Il'ina, L. F. Kolesnichenko, and I. N. Tupitsin, “Tribological properties of self-lubricating polymer materials containing molybdenum dichalcogenide,” Poroshk. Metall., No. 8, 76–81 (1987).

    Google Scholar 

  14. Japanese Application 61-91-351, “Powder material for articles subject to friction and wear,” I. Senda; K. K. Funitani Seiji, Publ. May 9, 1986.

  15. T. Watanabe, C. S. Park, and Y. C. Kim, “Operating characteristics of sintered porous bearings made of iron-tin and iron-tin-copper alloys,” Rept. Cast. Res. Lab., No. 39, 17–24 (1988).

    Google Scholar 

  16. I. M. Fedorchenko, N. G. Baranov, V. S. Ageeva, et al., “Tribological characteristics of powder composite materials based on copper with high-velocity friction,” Poroshk. Metall., No. 7, 52–56 (1986).

    Google Scholar 

  17. W. Schatt, C. Suer, and K.-H. Lippman, “Entwicklung höherfester Sintergleitlager auf Cu-Ti-Basis,” 7 Mezinar. Conf. Pravk. Met. ČSSR: PM 1987 (Pardubice, 22–24 Zan. 1987), Dresden (1987), pp. 191–195.

  18. USA Patent 476756, “Corrosion and wear resistant metal alloys having a high hot hardness and toughness,” R. F. Spitzer; MRC Bearings Inc., Publ. August 30, 1988.

  19. Japanese Application 60-165354, “Sintered wear resistant sliding material,” I. Takahasi, T. Subatma, S. Fukita, and U. Kadota: Toyota Chidosya K. K., Publ. August 28, 1985.

  20. V. P. Bondarenko, A. A. Pelinskii, Yu. A. Kazakov, et al., “Operating capacity of VNG-composites in axial bearings lubricated with water,” Trenie Iznos,8, No. 2, 281–287 (1987).

    Google Scholar 

  21. USA Patent 4808226, “Bearings fabricated from rapidly solidified powder and method,” C. M. Adam, Publ. February 28, 1989.

  22. I. M. Fedorchenko, V. A. Konchakovskii, V. N. Miroshnikov, et al., “Study of the operating properties of composite bearings in a water lubricant,” Poroshk. Metall., No. 5, 73–78 (1977); No. 6, 79–85 (1977).

    Google Scholar 

  23. FRG Application 3505374, “Gleitlagerwerkstoff,” W. Bickel, G. Braus, H. P. Baureis; Kolgenschmidt AG, Publ. June 28, 1986.

  24. French Application 2576913, “Method for preparing antifriction materials based on aluminum alloy,” G. F. Faurer, Publ. August 8, 1986.

  25. Japanese Application 610-250140, “Heat and wear resistant aluminum alloy,” M. Tsioda and K. Sibata' Nissan Chidosya K. K., Publ. November 7, 1986.

  26. A. T. Volochko and L. G. Tsarev, “Study of the properties of semifinished products made of aluminum powders with additions of lead and graphite,” Vestsi Akad. Nauk BSSR, Ser. Fiz.-Tekh. Nauk, No. 1, 12–16 (1989).

    Google Scholar 

  27. A. A. Torrance, “The tribological properties of aluminum-base powder complex,” Eur. Res. Mater. Substitum: Proc. Final Conf. Meet. (Brussels, December 9–11, 1986), London-New York (1988), pp. 453–460.

  28. K. Okada, “Friction properties of composite materials based on alumin-copper alloy hardened by discrete carbon fibers,” J. Jpn. Soc. Lubr. Eng.,32, No. 12, 880–885 (1987).

    Google Scholar 

  29. T. Somo and I. Oda, “Tribological study of selected ceramics versus metal sliding couples,” SAF Tech. Pap. Ser., Nagoya (1987), (Materials Research Lab. NGK Insulators Ltd., No. 87044).

  30. Japanese Application 61-136644, “Method for preparing antifriction carbon material impregnated with metal,” M. Tsunoda, K. Oto, and S. Sicheki; Hitati Kasei Kochyo K. K., Publ. June 24, 1986.

  31. V. F. Lykova, S. T. Televnyi, R. P. Shchegoleva, and A. A. Kiselev, “Powder composites based on iron and nickel for sealing gas turbines,” in: Powder Metallurgy Processes and Materials [in Russian], TsNIIchermet, Moscow (1985), pp. 45–51.

    Google Scholar 

  32. V. F. Lykova, Yu. A. Chelyukanov, V. P. Shchegoleva, et al., “Antifriction material for sealing purposes based on iron,” in: Production and Application of Powder Iron and Steel [in Russian], TsNIIchermet, Moscow (1988), pp. 80–86.

    Google Scholar 

  33. Japanese Application 62-260030, “Friction material alloyed during sintering,” I. Tomiyama, K. Saito, and H. Oyabu; Nippon Fumatsu Goki K. K., Publ. November 12, 1987.

  34. Japanese Application 61-67737, “Sintered friction material,” I. Senda; Toyota Chidosya K. K., Publ. April 7, 1986.

  35. Application 362 3929, R. Erich; Glico-Metal, Publ. Jan. 1, 1988.

  36. Pat. 95456 USA, “Frictional material,” K. Nobuo, Akebono Brake Ind. Co., Ltd., Publ. May 31, 1988.

  37. Japanese Application 62-70534, K. Nobuo, Publ. April 1, 1987.

  38. Japanese Application 61-266542, V. Sizumu, Publ. Nov. 26, 1986.

  39. L. Karpman, Souder,13, No. 3, 34–36 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 5(353), pp. 44–53, May, 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorchenko, I.M. Tendencies in creating composite materials for equipping friction assemblies. Powder Metall Met Ceram 31, 408–414 (1992). https://doi.org/10.1007/BF00796249

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00796249

Keywords

Navigation