Skip to main content
Log in

In vivo gene transfer: prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

The mitogenactivated protein kinase kinase (MAPKK) is a protein downstream ras which is rapidly activated in cells stimulated with various extracellular signals. These proteins are believed to play a pivotal role in integrating and transmitting transmembrane signals required for cell growth.

Methods and Results

To study the effect of inhibition of MAPKK on smooth muscle cell (SMC) proliferationin vivo after vascular injury, we performed experimental balloon angioplasty using the standard Clowes technique in male Wistar rats 14-weeks old. The animals did not receive any treatment after vascular injury (N=6) or were randomly assigned to receive, after balloon injury, a 30% (w/v) pluronic gel solution applied to the injured carotid artery, containing respectively: 1) no plasmid DNA (n=10); 2) RSV-lacZ (encoding the β-galactosidase gene) as control gene without effects on SMC proliferation (n=10); 3) Tg-CAT (encoding cloramphenicol acetyl-transferase gene under the control of thyreoglobulin promoter) as an additional control gene without effects on SMC proliferation (n=7); 4) a negative mutant of Mitogen-Activated Protein Kinase Kinase (MAPKK) (n=13). Fourteen days after vascular injury, carotid arteries were removed and cross sections were cut and stained with hematoxylin/eosin. Morphometric analysis demonstrated, in the MAPKK-treated rats, a significant reduction of both neointima (0.096±0.018 mm2 vs. 0.184±0.019 mm2, p<0.01) and neointima/media ratio (0.603±0.103 vs. 1.147±0.161, p<0.01) compared to control DNA.

Conclusions

The inhibition of MAPKK, by a dominant inhibitor mutant gene, prevents the SMC proliferation after vascular injuryin vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A, Marshall CJ, Cowley S (1994) Identification of the sites in map kinase kinase-1 phosphorylated by p74raf-1. EMBO J 13; 7: 1610–1619

    Google Scholar 

  2. Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90 (13): 5889–5892

    Google Scholar 

  3. Blumer KJ, Johnson GL (1994) Diversity in function and regulation of MAP kinase pathway. Trends Biol Sci 19; 236–240

    Google Scholar 

  4. Boguski MS, McCormick F (1993) Protein regulating ras and its relatives. Nature 366: 643–654

    Google Scholar 

  5. Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: Conserved structure and molecular mechanism. Nature 349: 117–127

    Google Scholar 

  6. Brott BC, Labinaz M, Culp SC, Fortin DF, Virmani R, Phillips HR, Stack RS (1994) Vessel remodeling after angioplasty: comparative anatomic studies. J Am Coll Cardiol 23: 138A. Abstract

    Google Scholar 

  7. Califf RM, Fortin DF, Frid DJ, Harlan WR III Ohman EM, Bengtson JR, Nelson CL, Tcheng JE, Mark DB, Stack RS (1991) Restenosis after coronary angioplasty: an overview. J Am Coll 17: 2B-13B

    Google Scholar 

  8. Clowes AW, Reidy MA, Clowes MM (1983) Kinetics of cellular proliferation after arterial injury: I. Smooth muscle growth in the absence of endothelium. Lab Invest 49: 327–333

    Google Scholar 

  9. Clowes AW, Reidy MA, Clowes MM (1983) Mechanisms of stenosis after arterial injury. Lab Invest 49: 208–215

    Google Scholar 

  10. Cowley S, Paterson H, Kemp P, Marshall CJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77: 841–852

    Google Scholar 

  11. Detre K, Holubkov R, Kelsey S, Cowley M, Kent K, Williams D, Myler R, Faxon D, Holmes D, Bourassa M, Block P, Gosselin A, Bentivolgio L, Leatherman L, Dorros G, King SB III, Galichia J, Al-Bassam M, Leon M, Robertson T, Passamani E (1988) Percutaneous transluminal coronary angioplasty in 1985–1986 and 1977–1981: the National Heart Lung and Blod Institute Registry. N Engl J Med 318: 265–270

    Google Scholar 

  12. Dickson B, Sprenger F, Morrison D, Hafen E (1992) Raf functions downstream of Ras1 in the Sevenless signal transduction pathway. Nature 360: 600–603

    Google Scholar 

  13. DiMario C, Gil R, Camezind E, Ozaki Y, von Birgelen C, Umans V, de Jaegere P, de Feyter PJ, Roelandt JRTC, Serruys PW (1995) Quantitative assessment with intracoronary ultrasound of the mechanism of restenosis after percutaneous transluminal coronary angioplasty and directional coronary atherectomy. Am J Cardiol 75: 772–777

    Google Scholar 

  14. Dixon WJ, Massey J Jr (1969)Introduction to Statistical Analysis. New York, Mc Graw-Hill, pp 231–234

    Google Scholar 

  15. Fischmann DL, Leon MB, Baim DS, Schatz RA, Savage MP, Penn I, Detre K, Veltri L, Ricci D, Nobuyoshi M, Cleman M, Heuser R, Almond D, Teirstein PS, Fisch RD, Colombo A, Brinker J, Moses J, Shanknovich A, Hirshfeld J, Bailey S, Ellis S, Rake R, Goldberg S (1994) for the Stent Retsenosis Study Investigators. N Engl J Med 331: 496–501

    Google Scholar 

  16. Furchgott RF (1983) Role of endothelium in responses of vascular smooth muscle. Circ Res 53: 557–573

    Google Scholar 

  17. Galis Z, Sukhova G, Larck M, Libby P (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94: 2493–2503

    Google Scholar 

  18. Gerald M, Tschirky H (1969) Measurement of blood pressure in unanesthetized rats and mice. Drug Res 18: 1285–1287

    Google Scholar 

  19. Gibbons G, Dzau V (1994) The emerging concept of vascular remodeling. N Engl J Med 330: 1431–1438

    Google Scholar 

  20. Glagov S (1994) Intimal hyperplasia, vascular remodeling, and the restenosis problem. Circulation 89: 2888–2891

    Google Scholar 

  21. Gruentzig AR, King SB, Sclumpf M, Siegenthaler W (1987) Long-term follow-up after percutaneous transluminal coronary angioplasty. N Engl J Med 316: 1127–1132

    Google Scholar 

  22. Halberg B, Rayter SI, Downard J (1994) Interaction of ras and raf in intact mammalian cells upon extracellular stimulation. J Biol Chem 269: 3913–3916

    Google Scholar 

  23. Hoffmann R, Mintz GS, Dussailant GR, Popma JJ, Pichard AD, Satler LF, Kent KM, Griffin J, Leon MB (1996) Patterns and mechanisms of stent restenosis. Circulation 94: 1247–1254

    Google Scholar 

  24. Holmes DR Jr, Vlietstra RE, Smith HC, Vetrovec GW, Kent KM, Cowley MJ, Taxon DP, Gruentzig AR, Kelsey SF, Detre KM, van Raden MJ, Mock MB (1984) Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am J Cardiol 53: Suppl: 77C-81C

    Google Scholar 

  25. Indolfi C, Avvedimento EV, Di Lorenzo E, Esposito G, Rapacciuolo A, Giuliano P, Grieco D, Cavuto L, Stingone AM, Ciullo I, Condorelli GL, Chiariello M (1997) Activation of cAMP-PKA signalling in vivo inhibits smooth muscle cell proliferation induced by vascular injury. Nature Medicine 3: 775–779

    Google Scholar 

  26. Indolfi C, Avvedimento EV, Rapacciuolo A, Di Lorenzo E, Esposito G, Stabile E, Feliciello A, Mele E, Giuliano P, Condorelli GL, Chiariello M (1995) Inhibition of cellular RAS prevents smooth muscle cell proliferation after vascular injury in vivo. Nature Medicine 6: 541–545

    Google Scholar 

  27. Indolfi C, Chiariello M, Avvedimento EV (1996) Selective gene therapy for proliferative disorders: sence and antisense. Nature Med 2: 634–635

    Google Scholar 

  28. Indolfi C, Esposito G, Di Lorenzo E, Rapacciuolo A, Feliciello A, Porcellini A, Avvedimento EV, Condorelli M, Chiariello M (1995) Smooth muscle cell proliferation is proportional to the degree of balloon injury in a rat model of angioplasty. Circulation 92: 1230–1235

    Google Scholar 

  29. Kolch W et al. (1993) Protein kinase C activates Raf-1 by direct phosphorilation. Nature 364: 249–252

    Google Scholar 

  30. Lafont A, Guzman L, Whitlow P, Goormastic M, Cornhill J, Chisholm G (1995) Restenosis after experimental angioplasty: intimal, medial, and advential changes associated with constrictive remodeling. Circ Res 76: 996–1002

    Google Scholar 

  31. Langille BL, Bendeck MP, Keeley FW (1989) Adaptations of carotid arteries of young and mature rabbits to reduced carotid flow. Am J Physiol 256: H931-H939

    Google Scholar 

  32. Langille BL, O'Donnel F (1986) Reductions in arterial diameter produced by cronic decreases in blood flow are endothelium dependent. Science 231: 405–407

    Google Scholar 

  33. Liu MW, Roubin GS, King SB III (1989) Restenosis after coronary angoplasty: potential biologic determinants and role of intimal hiperplasia. Circulation 79: 1374–1387

    Google Scholar 

  34. Marshall CJ (1995) Specifity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signalregulated kinase activation. Cell 80: 179–185

    Google Scholar 

  35. Mintz GS, Pompa JJ, Pichard AD, Kent KM, Satler LF, Wong SC, Hong MK, Kovach JA, Leon MB (1996) Arterial remodeling after coronary angioplasty. A serial intravascular ultrasound study. Circulation 94: 35–43

    Google Scholar 

  36. Nobuyoshi M, Kimura T, Nosaka H, Mioka S, Ueno K, Yokoi H, Hamasaki N, Horiuchi H, Ohishi H (1988) Restenosis restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll 12: 616–623

    Google Scholar 

  37. Nunes GL, Thomas CN, Hanson SR, Barry JJ, King SB 3rd Scott NA (1995) Inhibition of platelet-dependent thrombosis by local delivery of heparin with a hydrogel-coated balloon. Circulation 92: 1697–1700

    Google Scholar 

  38. Porras A, Muszyneski K, Rapp UR, Santos E (1994) Dissociation between activation of Raf-1 kinase and the 42-kDa mitogen-activated protein kinase/90-kDa S6 kinase (MAPK/RSK) cascade in the insulin/ras pathway of adypocytic differentiation of 3T3 L1 cells. J Biol Chem 269 (17): 12741–12748

    Google Scholar 

  39. Post MJ, Borst C, Kuntz RE (1994) The relative importance of arterial remodeling compared with intimal hyperplasia in lumen renar-rowing after ballon angioplasty. Circulation 89: 2816–2821

    Google Scholar 

  40. Reidy MA, Fingerle J, Linder V (1992) Factors controlling the development of arterial lesions after injury. Circulation 86 (suppl III): III-43–III-46

    Google Scholar 

  41. Roberts TM (1992) Cell biology. A signal chain of events. Nature 360: 534–535

    Google Scholar 

  42. Schwartz RS, Holmes DR jr, Topol EJ (1992) The restenosis paradigm revisited: an alternative proposal for cellular mechanism. J Am Coll Cardiol 20: 1284–1293

    Google Scholar 

  43. Serruys PW, De Jaegere P, Kiemeneij F, Macaya C, Rutsch W, Heyndrickx G, Emanuelsson H, Marco J, Legrand V, Materne P, Belardi J, Sigwart U, Colombo A, Goy JJ, van den Heuvel P Delcan J, Morel MA for the Benestent Study Group (1994) A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N Engl J Med 331: 489–495

    Google Scholar 

  44. Serruys PW, Emanuelsson H, van der Giessen W, Lunn AC, Kiemeney F, Macaya C, Rutsch W, Heyndrickx G, Suryapranata H, Legrand V, Goy JJ, Materne P, Bonnier H, Morice MC, Fajadet J, Belardi J, Colombo A, Garcia E, Ruygrok P, de Jaegere P, Morel MA on behalf of the Benestent II Study Group (1996) Heparin-coated Palmaz-Schatz stents in human coronary arteries. Early outcome of the Benestent II pilot study. Circulation 93: 412–422

    Google Scholar 

  45. Serruys PW, Luijten HE, Beatt KJ, Jeuskens R, De Feyter PJ, Van den Brand M, Reiber JHC, ten Katen HJ, van Es GA, Hugenoltz PG (1988) Incidence of restenosis after successful coronary angioplasty: a time-related phenomenon: a quantitative angiographic study in 342 consecutive patients at 1,2,3, and 4 months. Circulation 77: 361–371

    Google Scholar 

  46. Simons M, Edelman ER, DeKeyser JL, Langer R, Rosenberg RD (1992) Antisense c-myb oligonucleotides inhibits intimal arterial smooth muscleell accumulation in vivo. Nature 359: 67–70

    Google Scholar 

  47. Strauss BH, Chilsolm RJ, Keeley FW, Gotlieb AI, Logan RA, Armstrong PW (1994) Extracellular matrix remodeling after ballon angioplasty injury in a rabbit model of restenosis. Circ Res 75: 650–658

    Google Scholar 

  48. Williams NG, Paradis H, Agarwal S, Charest DL, Pelech SL, Roberts TM (1993) Raf-1 and p21v-ras cooperate in the activation of mitogen-activated protein kinase. Proc Natl Acad Sci USA 90: 5772–5776

    Google Scholar 

  49. Wood KW, Sarnecki C, Roberts TM, Blenis J (1992) Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1, and RSK. Cell 68 (6): 1041–1050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Indolfi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indolfi, C., Avvedimento, E.V., Rapacciuolo, A. et al. In vivo gene transfer: prevention of neointima formation by inhibition of mitogen-activated protein kinase kinase. Basic Res Cardiol 92, 378–384 (1997). https://doi.org/10.1007/BF00796211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00796211

Key words

Navigation