Advertisement

Soviet Powder Metallurgy and Metal Ceramics

, Volume 29, Issue 1, pp 78–82 | Cite as

Laser chemical production of thin iron films, powders, and fibers from the carbonyl gaseous phase

  • A. N. Skachkov
  • V. G. Syrkin
  • A. I. Syrovatkin
  • A. A. Uél'skii
  • M. A. Khatsernov
  • V. I. Chernyak
Theory and Technology of Sintering, Heat Treatment, and Chemicothermal Treatment
  • 13 Downloads

Conclusions

Healing a quartz substrate in a medium of IPC to a temperature above 500 K. by pulsed (> 5·10−1 sec) radiation of a CO2 laser with intensity of 50–100 W·cm−2 yields thin (up to 3 μm) iron films at a rate of 2 μm·sec−1 on a surface bounded by the cross section of the laser beam.

When the intensity of the radiation is increased to 250 W·cm−2, the process of decomposition of the IPC spreads to the gaseous phase. Together with intense crystallization of iron on the surface of the substrate (the surface temperature is ∼ 1500 K) a finely disperse (0.1–0.3 μm) iron powder also forms.

Keywords

Radiation Iron Crystallization Quartz Gaseous Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. P. Herman, R. A. Hyde, B. M. McWilliams, et al., “Waferscale laser litography. I. Pyrolytic deposition metal microstructures, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices,” R. M. Osgood, S. R. J. Bueck, and H. R. Schlossberg (eds.), Vol. 17, New York (1983), pp. 9–18.Google Scholar
  2. 2.
    D. J. Ehrlich, R. M. Osgood, and T. F. Deutch, “Direct writing of refractory metal thin film structures by laser photodeposition,” J. Electrochem. Soc.,28, No. 9, 2039–2041 (1981).Google Scholar
  3. 3.
    S. D. Silen and M. Bass, “Laser chemical vapor deposition of metals and insulators,” J. Vac. Sci. Technol.,16, No. 2, 431–434 (1979).Google Scholar
  4. 4.
    R. Solanki, P. K. Bouer, and G. J. Collins, “Low-temperature refractory metal film deposition,” Appl. Phys. Lett.,41, No. 11, 1048–1050 (1982).Google Scholar
  5. 5.
    E. W. Andreatta, C. C. Abele, J. F. Osmundsen et al., “Low-temperature growth of polycrystalline Si and Ge films,” Appl. Phys. Lett.,40, No. 2, 183–185 (1981).Google Scholar
  6. 6.
    S. M. Bedair, J. K. Whisnant, N. H. Karam, et al., “Laser selective deposition of III–V compounds of GaAs and Si substrates,” J. Cryst. Growth,77, Nos. 1–3, 229–234 (1986).Google Scholar
  7. 7.
    G. A. West, A. Gupta, and K. W. Benson, “CO2 laser induced chemical vapor deposition of titanium silicide films,” Appl. Phys. Lett.,47, No. 5, 476–478 (1985).Google Scholar
  8. 8.
    S. D. Allen and A. B. Tringubo, “Laser chemical vapor deposition of selected area Fe and W films,” J. Appl. Phys.,54, No. 3, 1641–1643 (1983).Google Scholar
  9. 9.
    S. D. Allen, A. B. Tringubo, and Y. C. Liu, “Laser chemical vapor deposition using continuous wave and pulse lasers,” Opt. Eng.,23, No. 4, 470–474 (1984).Google Scholar
  10. 10.
    R. B. Jackman, J. S. Foord, E. A. Adams, and M. L. Lloyd, “Laser chemical vapor deposition of patterned Fe on silica glass: Observation and origins of periodic ripple structures,” J. Appl. Phys.,59, No. 6, 2031–2035 (1986).Google Scholar
  11. 11.
    V. G. Syrkin, Carbonyl Metals [in Russian], Metallurgiya, Moscow (1978).Google Scholar
  12. 12.
    S. D. Allen, “Laser chemical vapor deposition: A technique for selective area deposition,” J. Appl. Phys.,52, No. 11, 6501–6505 (1981).Google Scholar
  13. 13.
    W. Lewly, Laser Technology and Analysis of Materials [Russian translation], Mir, Moscow (1986).Google Scholar
  14. 14.
    V. N. Votintsev, I. S. Zaslonko, V. S. Mikheev, and V. N. Smirnov, “The mechanism and kinetics of decomposition of silane in shock waves,” Kinet. Katal.,27, No. 4, 972–976 (1986).Google Scholar
  15. 15.
    B. A. Loyce and R. R. Bradley, “Epitaxial growth of silicon from the pyrolysis of monoilane on silicon substrates,” J. Electrochem. Soc.,110, No. 12, 1235–1238 (1963).Google Scholar
  16. 16.
    N. A. Fuks, The Mechanics of Aerosols [in Russian], Izd. Akad. Nauk SSSR, Moscow (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. N. Skachkov
    • 1
  • V. G. Syrkin
    • 1
  • A. I. Syrovatkin
    • 1
  • A. A. Uél'skii
    • 1
  • M. A. Khatsernov
    • 1
  • V. I. Chernyak
    • 1
  1. 1.Government Research Institute of the Chemistry and Technology of Heteroorganic CompoundsUSSR

Personalised recommendations