Skip to main content
Log in

Structural mechanisms of dispersion of the grain structure in ceramic materials

  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. S. S. Ordan'yan, A. I. Dmitriev, and K. T. Biziev, “Interaction in B4C-MevB2 systems,” Poroshk. Metall., No. 10, 66–70 (1987).

    Google Scholar 

  2. J. Echigoya and H. Takabajashiy Suto, “Hardness and fracture toughness of directionally solidified Al2O3-ZrO3 (Y2O3) eutectics,” J. Mater. Sci. Lett.,5, No. 2, 153–154 (1986).

    Google Scholar 

  3. E. W. Kruse and M. E. Fine, “Precipitation strengthening of MgO by MgFe2O4,” J. Am. Ceram. Soc.,55, No. 1, 32–37 (1972).

    Google Scholar 

  4. W. S. Williams, “Dispersion hardening of TiC by boron doping,” Trans. Met. Soc. AIME,236, No. 2, 211–216 (1966).

    Google Scholar 

  5. M. Komac, T. Kosmac, M. Drofenik, et al., “TaC-base refractory materials and hard metals,” in: P/M 78: 5th European Symposium on Powder Metallurgy (Stockholm, 1978).

  6. G. B. Bokii, G. N. Bezrukov, Yu. A. Klyuev, et al., Natural and Synthetic Diamonds [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  7. T. Goscinska and J. Auleytner, “Influence of chromium and titanium oxide dopants on the real structure and the mechanical properties of corundum single crystals,” Krist. und Techn.,14, No. 7, 783–795 (1979).

    Google Scholar 

  8. R. W. Rice, Treatise on Material Science and Technology, No. 11, New York (1977), pp. 199–381.

    Google Scholar 

  9. V. N. Eremenko and T. Ya. Velikanova, “The use of phase diagrams of ternary systems of metals containing carbides in development of high-temperature strength hard alloys,” Poroshk. Metall., No. 12, 55–68 (1983).

    Google Scholar 

  10. K. K. Strelov, “The properties of crystals of partially stabilized zirconium dioxide,” Ogneupory, No. 6, 5–6 (1988).

    Google Scholar 

  11. G. S. Oleinik and M. L. Gorb, “Investigation of the strength of polycrystalline silicon carbide,” Poroshk. Metall., No. 12, 79–83 (1974).

    Google Scholar 

  12. P. S. Kislyi, M. A. Kuzenkova, A. V. Kurdyumov, et al., “The structure and features of fracture of recrystallized AlN,” in: The Physics of Fracture. Summaries of Papers for the Fourth All-Union Conference [in Russian], Inst. Probl. Materialoved. Akad. Nauk UkrSSR, Kiev (1980), pp. 280–282.

    Google Scholar 

  13. R. H. J. Hannink and M. J. Murrary, “The effect of domain size on the hardness of ordered VCd−0.84” Acta Met.,20, No. 1, 123–131 (1972).

    Google Scholar 

  14. R. S. DeVries, “Plastic deformation and work hardening of diamons,” Mater. Res. Bull.,10, No. 11, 1193–1198 (1975).

    Google Scholar 

  15. V. I. Trefilov, Yu. F. Mil'man, and I. V. Gridneva, “The mechanical properties of covalent crystals,” Izv. Akad. Nauk SSSR, Neorg. Mater.,20, No. 6, 958–966 (1984).

    Google Scholar 

  16. W. M. Sherry and J. B. Vander Sande, “Microstructural characterization of calcium fluoride single crystals deformed in steady state,” J. Mater. Sci.,16, No. 6, 1477–1489 (1981).

    Google Scholar 

  17. G. Ya. Akimov, V. I. Zaitsev, and V. A. Strel'tsov, “Strain hardening of hydrostatically compressed single crystals,” Ukr. Fiz. Zh.,25, No. 11, 1917–1919 (1980).

    Google Scholar 

  18. A. P. Garshin and G. S. Oleinik, “The influence of boron on the microstructure and microhardness of polycrystalline silicon carbide,” Abrazivy, No. 9, 4–9 (1975).

    Google Scholar 

  19. R. A. Andrievskii, I. I. Spivak, and V. V. Klimenko, “The display of superplasticity of refractory compounds,” Dokl. Akad. Nauk SSSR,203, No. 6, 1279–1281 (1972).

    Google Scholar 

  20. I. I. Spivak, R. A. Andrievskii, and V. V. Klimenko, “The creep of two-phase TiC alloys,” Poroshk. Metall., No. 3, 93–97 (1974).

    Google Scholar 

  21. S. S. Ordan'yan, V. I. Unrod, and A. I. Avgustinnik, “Interaction in the TiCx-TiB2 system,” ibid., No. 9, 40–43 (1975).

    Google Scholar 

  22. I. I. Spivak, R. A. Andrievskii, and V. D. Lazorenko, “Investigation of creep in TiB2-TiC and ZrB2-ZrN binary systems,” ibid., No. 8, 17–21 (1974).

    Google Scholar 

  23. S. S. Ordan'yan, A. I. Dmitriev, and E. K. Stepanenko, “The SiC-TiB2 system — the basis of high-hardness wear-resistant materials,” ibid., No. 5, 32–34 (1987).

    Google Scholar 

  24. J. Stamenkovic, G. Ondracek, and O. Vohringer, “The influence of eutectic compositions on the sintering temperature of alumina-titania ceramics (Al2O3-TiO2),” Berichte DKG,64, No. 5, 154–156 (1987).

    Google Scholar 

  25. Jun-ichi Echigoya and Hajime Suto, “Structure of interphase interface and solute segregation in directionally solidified MgO-ZrO2 eutectic,” Trans. Jpn. Inst. Met.,27, 213–220, 377–378 (1986).

    Google Scholar 

  26. M. Lancin, “β → α phase transformation in sintered SiC involving feather formation,” J. Mater. Sci.,22, No. 4, 1150–1156 (1987).

    Google Scholar 

  27. J. J. Rassmussen and W. D. Kingery, “Effect of dopants on the defect structure of singlecrystal aluminum oxide,” J. Am. Ceram. Soc.,53, No. 8, 436–440 (1970).

    Google Scholar 

  28. V. K. Sul'zhenko, M. A. Kuzenkova, and G. S. Oleinik, “The influence of temperature on the strength of aluminum nitride,” in: High-temperature Nitrides and Materials Based on Them [in Russian], Inzt. Probl. Materialoved. Akad. Nauk UkrSSR, Kiev (1985), pp. 80–85.

    Google Scholar 

  29. M. Brun and V. S. Stubican, “Precipitation studies in the system WC-ZrC,” J. Am. Ceram. Soc.,57, No. 3, 117–119 (1974).

    Google Scholar 

  30. S. E. Hsu, W. Kobes, and M. Fine, “Strengthening of sapphire by precipitates containing titanium,” ibid.,50, No. 3, 149–151 (1967).

    Google Scholar 

  31. S. V. Kuo, A. V. Virkar, and W. Rafaniello, “Modulated structures of SiC-AlN ceramics,” ibid.,70, No. 6, 125–128 (1987).

    Google Scholar 

  32. Takelo Sakuma, “Spinodal decomposition in ceramic materials,” Tetsu to Hagane, J. Iron Steel Inst. Jpn.,73, No. 11, 1153–1160 (1987).

    Google Scholar 

  33. F. Y. Wahd Franklin and P. Gupta Kedar, “Phase transformation in the oxides,” Met. Trans.,4, No. 12, 2767–2779 (1973).

    Google Scholar 

  34. T. Sakuma, V. Voshizawa, and H. Suto, “The modulated structure formed by isothermal aging in ZrO2-5.2 mol.% Y2O3 alloy,” J. Mater. Sci.,20, No. 3, 1084–1087 (1985).

    Google Scholar 

  35. A. N. Pilyankevich, G. S. Oleinik, and V. F. Britun, “The role of polymorphic and polytype transformations in the structure formation of covalent substance-base materials,” in: Materials of the Seventh Conference on Powder Metallurgy in Poland, Cracow, 88 [in Russian], Vol. 2, pp. 521–530.

  36. M. Ruhle and A. H. Heur, “Microstructural evolution in a ZrO2-12 wt.% Y2O3 ceramic,” J. Am. Ceram. Soc.,68, No. 8, 427–431 (1985).

    Google Scholar 

  37. R. H. Hannink, M. J. Murray, and M. E. Packer, “Observations on the domain structures of V6C5,” Philos. Mag.,24, No. 191, 1179–1195 (1971).

    Google Scholar 

  38. J. P. Marniroli, M. Krachfi, A. Courtols, and M. Gantoins, “Observations of nonperiodic and periodic defect structures in M7C3 carbides,” ibid.A56, No. 1 (1987).

  39. G. R. Venk (general editor), Electron Microscopy in Mineralogy [Russian translation], Mir, Moscow (1979).

    Google Scholar 

  40. R. Chang and C. G. Rhodes, “High-pressure hot pressing of uranium carbide powders and mechanism of sintering of refractory bodies,” J. Am. Ceram. Soc.,45, No. 8, 379–382 (1962).

    Google Scholar 

  41. J. S. Haggerty and D. W. Lee, “Plastic deformation of ZrB2 single crystals,” ibid.,54, No. 11, 572–576 (1971).

    Google Scholar 

  42. J. Billingham and M. U. Lewis, “Dislocation mechanisms for the nucleation of transformations in vanadium carbide,” Philos. Mag.,24, No. 188, 231–240 (1971).

    Google Scholar 

  43. A. N. Pilyankevich, V. F. Britun, and G. S. Oleinik, “Microstructural features of fragmentation of covalent crystals at high pressures and temperatures,” Dokl. Akad. Nauk UkrSSR, Ser. A, No. 4, 81–84 (1989).

    Google Scholar 

  44. V. I. Labes, S. I. Futergendler, I. V. Lavrov, and E. G. Shchelacheva, “The influence of thermal shock on the substructure and strength of single crystals of cubic BN,” Probl. Prochn., No. 5, 73–76 (1983).

    Google Scholar 

  45. J. S. Spiziy, “He isostatisches pressen für bessere Werkstoffe oder zum folgen,” Werstatt und Betrieb,117, No. 3, 179–180 (1984).

    Google Scholar 

  46. A. G. Lanin, V. N. Turchin, A. B. Emel'yanov, et al., “The influence of programmed strengthening on the mechanical properties of zirconium carbide,” Fiz. Khim. Obrab. Mater., No. 2, 88–92 (1982).

    Google Scholar 

  47. H. C. Heard and C. F. Cline, “Mechanical behavior of polycrystalline BeO, Al2O3, and AlN at high pressure,” J. Mater. Sci.,15, No. 8, 1889–1897 (1980).

    Google Scholar 

  48. J. M. Brusso, D. E. Mikkola, and J. E. Flinn, “Dislocations generation in alumina deformed by impact loading,” Ser. Met.,22, No. 1, 47–52 (1988).

    Google Scholar 

  49. Osamu Vamada, “High-pressure self-combustion sintering of titanium carbide,” J. Am. Ceram. Soc.,70, No. 9, 206–208 (1987).

    Google Scholar 

  50. R. W. Rice, W. J. McDonough, G. Y. Richardson, et al., “Hot rolling of ceramics using self-propagating high temperature synthesis,” Ceram. Eng. Sci. Proc.,7, No. 7–8, 751–760 (1986).

    Google Scholar 

  51. A. H. Heuer, D. I. Sellers, and W. H. Rhodes, “Hot-working of aluminum oxide. I. Primary recrystallization and texture,” J. Am. Ceram. Soc.,52, No. 9, 468–474 (1969).

    Google Scholar 

  52. R. W. Rice, “Deformation, recrystallization, strength and fracture of press-forged ceramic crystals,” J. Am. Ceram. Soc.,55, No. 2, 90–97 (1972).

    Google Scholar 

  53. R. W. Rice and J. G. Hunt, “Hot extrusion of MgO,” Am. Ceram. Soc. Bull.,43, No. 4, 297–282 (1964).

    Google Scholar 

  54. A. G. Lanin, V. N. Turchin, O. N. Erin, and S. N. Sul'yanov, “Recrystallization of zirconium carbide,” Poroshk. Metal., No. 2, 86–92 (1986).

    Google Scholar 

  55. T. A. Parthasarathy and P. G. Shewmon, “Diffusion induced recrystallization of NiO,” Acta Met.,32, No. 1, 29–33 (1984).

    Google Scholar 

  56. A. N. Pilyankevich and G. S. Oleinik, “The role of recrystallization in the structure formation of ceramic materials,” in: Proceedings of the Seventh International Conference on Powder Metallurgy in the Czechoslovak SSR, Pardubice, 1987 [in Russian], Vol. 1 (1987), Vol. 1, pp. 79–86.

    Google Scholar 

  57. A. N. Pilyankevich and G. S. Oleinik, “Structure formation of polycrystalline superhard materials at high pressures and temperatures,” in: The Influence of High Pressures on a Substance [in Russian], Vol. 1, Naukova Dumka, Kiev (1987), pp. 57–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Translated from Poroshkovaya Metallurgiya, No. 1(325), pp. 35–42, January, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilyankevich, A.N., Oleinik, G.S. & Britun, V.F. Structural mechanisms of dispersion of the grain structure in ceramic materials. Powder Metall Met Ceram 29, 30–37 (1990). https://doi.org/10.1007/BF00796090

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00796090

Keywords

Navigation