Skip to main content
Log in

Structure and properties of the powdered antifriction material iron-copper-tin-lead

  • Powder-Metallurgy Materials, Products, and Coating
  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. I. M. Fedorchenko and L. I. Pugina, Composite Sintered Antifriction Materials [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  2. I. Osamu, A. Takanori, and W. Jeruhisa, “Funtai oebi fummatsu yakin,” J. Jap. Soc. Powder and Powder Met.,27, No. 8, 261–265 (1980).

    Google Scholar 

  3. D. A. Robins, “Additions d'etain, avec on sans cuivre, dans les pieces en poudre de fer frittées,” Rev. Univ. Mines,115, No. 4, 211–214 (1972).

    Google Scholar 

  4. V. N. Eremenko, L. E. Pechenkovskaya, and M. P. Churakov, “Formation of an interlayer of the phase FeSn2 in hot lead coating,” Fiz. Khim. Obrab. Mater., No. 3, 124–126 (1976).

    Google Scholar 

  5. GOST 16138-70. Lead Powder. Valid from July 1, 1971.

  6. GOST 9723-73. Tin Powder. Valid from January 1, 1975.

  7. GOST 4960-75. Electrolytic Copper Powder. Technical Conditions. Valid from January 1, 1977.

  8. GOST 9849-74. Iron Powder. Valid from January 1, 1975.

  9. GOST 18898-73. Powder Metallurgy. Products. Methods of Determining Density and Porosity. Valid from January 1, 1975.

  10. N. E. Ponomarenko and V. M. Leshchenko, “Installation for wear and friction tests of antifriction materials at speeds of up to 50 m/sec,” Fiz. Khim. Mekh. Mater.,2, No. 2, 236–237 (1966).

    Google Scholar 

  11. GOST 9012-59. Metals. Test Methods. Measurement of Brinell Hardness. Valid from January 1, 1960.

  12. GOST 26528-85. Powder Materials. Methods of Impact Bending Tests. Valid from July 1, 1986.

  13. GOST 26529-85. Powder Materials. Method of Radial Compression Testing. Valid from July 1, 1986.

  14. M. Hansen and K. Anderko, The Structure of Binary Alloys: in Two Volumes [Russian translation], Metallurgizdat, Moscow (1962).

    Google Scholar 

  15. K. Youn and W. Jeruhisa, “Funtai oebi fummatsu yakin,” J. Jpn. Soc. Powder and Powder Met.,33, No. 6, 306–310 (1986).

    Google Scholar 

  16. G. A. Meerson, V. V. Zhuravlev, and E. G. Zimina, “Investigation of the kinetics of compaction in the sintering of the composite iron-copper-tin,” Trudy Nauchno-proizvodstvennogo i Konstruktorsko-tekhnologicheskogo Instituta Prirodnykh Almazov i Instrumenta, No. 2, 26–34 (1974).

    Google Scholar 

  17. R. Duckett and D. A. Robins, “Tin additions to aid the sintering of iron powder,” Metallurgiya,74, No. 444, 163–167 (1966).

    Google Scholar 

  18. I. B. Long and D. A. Robins, “Improving the sintering performance of iron powder by the addition of tin,” in: Mod. Develop. Powder Met., Vol. 4, New York-London (1971), pp. 303–313.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 7(331), pp. 34–38, July, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baranov, N.G., Ageeva, V.S., Zabolotnyi, L.V. et al. Structure and properties of the powdered antifriction material iron-copper-tin-lead. Powder Metall Met Ceram 29, 540–543 (1990). https://doi.org/10.1007/BF00796067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00796067

Keywords

Navigation