Soviet Powder Metallurgy and Metal Ceramics

, Volume 17, Issue 6, pp 455–459 | Cite as

Temperature dependence of the hardness of dispersion-strengthened molybdenum alloys

  • V. A. Borisenko
  • R. A. Alfintseva
Power Metallurgical Materials, Parts, and Coatings
  • 27 Downloads

Conclusions

An analysis of the relationships between the hardness of molybdenum and dispersion-strengthened molybdenum alloys and temperature has shown that these relationships obey an exponential law and represent four distinct regions. In each of them plastic deformation is controlled by a specific mechanism: 1) the overcoming of Peierls-Nabarro barriers, temperature range (0.15–0.2)Tm of molybdenum; 2) motion of newly formed dislocations, (0.2–0.37)Tm; 3) detachment of dislocations from interstitial atoms, (0.37–0.5)Tm; 4) vacancy migration and diffusion along dislocations, (0.5–0.6)Tm.

Keywords

Migration Plastic Deformation Molybdenum Specific Mechanism Distinct Region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. A. Alfintseva and V. A. Borisenko, “Temperature dependence of the hardness of dispersion-strengthened molybdenum,” Poroshk. Metall., No. 10, 65–69 (1973).Google Scholar
  2. 2.
    E. Pink, “Thermisch aktivierte Verformungsmechanismen in Molybdän und in warmfesten Molybdänlegierungen,” Z. Metallk.,62, No. 8, 616–621 (1971).Google Scholar
  3. 3.
    R. A. Alfintseva, V. A. Borisenko, et al., “Strength of dispersion-strengthened molybdenum alloys,” Fiz.-Khim. Mekh. Mater., No. 4, 77–81 (1975).Google Scholar
  4. 4.
    G. V. Samsonov, R. A. Alfintseva, et al., “Hot pressing as a means of controlling the properties of dispersion-strengthened molybdenum-aluminum-nitride alloys,” in: Hot Pressing [in Russian], Vol. 2, ONTI IPM Akad. Nauk Ukr. SSR, Kiev (1975), pp. 119–127.Google Scholar
  5. 5.
    E. K. Fen', V. A. Borisenko, M. S. Koval'chenko, et al., “Temperature dependence of the hardness of hot-pressed transition metal oxides and metal-oxide composites,” in: Hot Pressing [in Russian], Vol. 2, ONTI IPM Akad. Nauk Ukr. SSR, Kiev (1975), pp. 158–164.Google Scholar
  6. 6.
    V. I. Trefilov, “Role of type of atomic linkage in brittle rupture,” in: Physical Nature of the Brittle Rupture of Metals [in Russian], Naukova Dumka, Kiev (1965), pp. 22–58.Google Scholar
  7. 7.
    V. A. Borisenko, “General laws of the variation of the mechanical properties of refractory materials with temperature (Parts I and II),” Probl. Prochn., No. 8, 58–63, no. 9, 23–31 (1975).Google Scholar
  8. 8.
    V. A. Borisenko, “Dependence of the strength of tungsten and molybdenum on temperature,” Dopovidi Akad. Nauk Ukr.RSR, Ser. A, No. 6, 546–550 (1976).Google Scholar
  9. 9.
    V. A. Borisenko, “Strength and internal friction of molybdenum,” Probl. Prochn., No. 6, 77–82 (1976).Google Scholar
  10. 10.
    V. A. Borisenko, “Temperature dependence of the strength of molybdenum,” Probl. Prochn., No. 12, 36–44 (1976).Google Scholar
  11. 11.
    V. A. Borisenko, “Analysis of the effect of temperature on the strength of tungsten-molybdenum alloys,” Dopovidi Akad. Nauk Ukr. RSR, Ser. A, No. 9, 843–848 (1976).Google Scholar
  12. 12.
    V. A. Borisenko, V. P. Krash-chenko, et al., “High-temperature strength of a gold-silver-copper alloy,” Dopovidi Akad. Nauk Ukr.RSR, Ser. A, No. 7, 659–662 (1976).Google Scholar
  13. 13.
    G. S. Pisarenko, V. A. Borisenko, et al., Strength of Refractory Metals [in Russian], Metallurgiya, Moscow (1970).Google Scholar
  14. 14.
    M. F. Ashby, “A first report on deformation-mechanism maps,” Acta Metall.,20, No. 7, 887–897 (1972).Google Scholar
  15. 15.
    V. I. Trefilov, Yu. V. Mil'man, and S. A. Firstov, Physical Principles of the Strength of Refractory Metals [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  16. 16.
    K. Tanoue, Y. Aono, et al., “Low-temperature deformation of sintered Mo alloys,” J. Jpn. Inst. Met.,38, No. 12, 1178–1185 (1974).Google Scholar
  17. 17.
    A. Urakami and M. Fine, “Solid solution softening by double kink catalysis,” Proceedings of an International Conference on the Mechanical Behavior of Materials, Kyoto, 1971, Vol. 1, Kyoto (1972), pp. 87–96.Google Scholar
  18. 18.
    V. I. Nikitenko, “Dislocation mobility in the Peierls potential relief,” in: Dislocation Dynamics [in Russian], Naukova Dumka, Kiev (1975), pp. 7–26.Google Scholar
  19. 19.
    H. J. Goldschmidt, Interstitial Alloys, Plenum Publ. (1966).Google Scholar
  20. 20.
    P. Dubois and G. Cizeron, “Comportement mecanique a basse temperature des solutions solides fertitane et le mecanisme associé,” Acta Metall.,23, No. 6, 703–712 (1975).Google Scholar
  21. 21.
    H. Saka, K. Noda, and T. Imura, “Direct observation of dislocation multiplication in iron at low temperatures by HVEM,” Trans. Iron Steel Inst. Jpn.,13, No. 5, 318–324 (1973).Google Scholar
  22. 22.
    I. S. Malashenko and N. P. Vashchilo, “Temperature sensitivity of the yield limit of molybdenum with small alloying additions,” Probl. Prochn., No. 4, 50–53 (1975).Google Scholar
  23. 23.
    I. G. Polotskii, “Interaction of crystal structure imperfections with ultrasonic vibrations in metals,” in: Metals, Electrons, and the Lattice [in Russian], Naukova Dumka, Kiev (1975), pp. 389–413.Google Scholar
  24. 24.
    S. A. Golovin, “Dislocation structure of metals and vibration damping,” in: Energy Dissipation during the Vibration of Mechanical Systems [in Russian], Naukova Dumka, Kiev (1968), pp. 326–331.Google Scholar
  25. 25.
    V. D. Verner, Yu. V. Piguzov, and I. Ya. Rzhevskaya, “Interaction between interstitial impurities and dislocations in molybdenum,” in: Interaction between Dislocations and Impurity Atoms in Metals and Alloys [in Russian], Tula Polytechnic Inst. (1969), p. 81.Google Scholar
  26. 26.
    J. Friedel, Les Dislocations, Gauthier-Villars, Paris (1956).Google Scholar
  27. 27.
    G. V. Samsonov, M. S. Koval'chenko, E. K. Fen', et al., “Creep of refractory metals with oxide additions during hot pressing,” in: Hot Pressing [in Russian], Izd. ONTI IPM Akad. Nauk Ukr. SSR, Kiev (1973), pp. 14–21.Google Scholar
  28. 28.
    P. Haasen, “Zur plastischen Verformung von Germanium und InSb,” Z. Phys.,167, 461–467 (1962).Google Scholar
  29. 29.
    H. Conrad, “Thermally activated deformation of metals,” J. Met.,16, No. 7, 582–588 (1964).Google Scholar
  30. 30.
    M. S. Koval'chenko, V. V. Dzhemelinskii, and V. A. Borisenko, “Temperature dependence of the hardness of titanium, zirconium, and hafnium carbides,” Probl. Prochn., No. 5, 63–66 (1969).Google Scholar
  31. 31.
    G. B. Gibbs, “On the flow stress and activation energy for low-temperature deformation,” Phil. Mag.,20, No. 166, 863–865 (1969).Google Scholar
  32. 32.
    R. L. Stocker and M. F. Ashby, “On the empirical constants in the Dorn equation,” Scripta Metall.,7, No. 1, 115–120 (1973).Google Scholar
  33. 33.
    É. A. Abramyan, L. I. Ivanov, et al., “Effect of purity of bcc metals on their high-temperature creep,” Izv. Akad. Nauk SSSR, Met., No. 1, 150–158 (1974).Google Scholar
  34. 34.
    J. H. Gittus, “Development of a theoretical equation for steady-state dislocation creep and comparison with data,” Acta Metall.,22, No. 6, 789–791 (1974).Google Scholar
  35. 35.
    V. S. Ivanova, “Spectra of activation energy for elementary processes of atomic rearrangements in metals,” Dokl. Akad. Nauk SSSR,220, No. 3, 579–581 (1975).Google Scholar
  36. 36.
    M. S. Koval'chenko, V. A. Borisenko, et al., “Comparison of the properties of some refractory metals prepared by hot pressing and by pressing followed by sintering,” in: Theory and Practice of Powder Pressing [in Russian], Izd. IPM Akad. Nauk Ukr. SSR, Kiev (1975), pp. 126–130.Google Scholar
  37. 37.
    A. Seeger, “Slip and strengthening mechanism in fcc and hcp metals,” in: Dislocations and Mechanical Properties of Crystals [Russian translation], IL, Moscow (1960), pp. 179–268.Google Scholar
  38. 38.
    J. Friedel, Discussion, High-Strength Materials, Proceedings of the Second Berkeley International Materials Conference, 1964, Wiley, New York (1965), pp. 507–509.Google Scholar
  39. 39.
    K. J. McMahon, “Microplasticity of iron,” in: Microplasticity [Russian translation], Metallurgiya, Moscow (1972), pp. 101–117.Google Scholar
  40. 40.
    J. M. Roberts, Discussion, Proceedings of an International Conference on the Strength of Metals and Alloys, Tokyo, 1967, Sendai (1968), pp. 495–496.Google Scholar
  41. 41.
    F. R. N. Nabarro, Z. S. Basinski, and D. B. Holt, Plasticity of Pure Single Crystals [Russian translation], Metallurgiya, Moscow (1967).Google Scholar
  42. 42.
    V. A. Borisenko and V. P. Krashchenko, “Temperature dependence of hardness of Group IB metals,” Acta Metall.,25, No. 3, 251–256 (1977).Google Scholar
  43. 43.
    V. A. Borisenko and V. P. Krashchenko, “Analysis of metal hardness variations,” Vestn. Akad. Nauk Ukr. SSR, No. 2, 6–13 (1977).Google Scholar
  44. 44.
    V. A. Borisenko, V. P. Krashchenko, et al., “Thermally activated plastic deformation in dispersion-strengthened molybdenum alloys,” Ukr. Fiz. Zh.,22, No. 2, 282–290 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. A. Borisenko
    • 1
    • 2
  • R. A. Alfintseva
    • 1
    • 2
  1. 1.Institute of Strength ProblemsAcademy of Sciences of the Ukrainian SSRUkraine
  2. 2.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations