Skip to main content
Log in

Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The characterization of various ion transport systems has led to a better understanding of the effects, which seem to take part in the impairment of ischemic and reperfused cardiac tissue. This review discusses the role of the Na+/H+ exchange system in the pathophysiology of ischemia and reperfusion and the beneficial effects of its inhibition.

At the onset of ischemia intracellular pH (pHi) decreases due to anaerobic metabolism and ATP hydrolysis, leading to an activation of Na+/H+ exchange. This in turn increases intracellular Na+ (Na+ i) and activates Na+/K+ ATPase, with a consecutive increase of energy consumption. Since cellular Na+ and Ca++ transport are coupled by the Na+/Ca++ exchange system, which depends on the Na+ gradient, the high Na+ i leads to increased intracellular Ca++ (Ca++ i). After a certain period, Na+/H+ exchange is inactivated by a decrease of extracellular pH.

In case of reperfusion the acid extracellular fluid is washed out, which reactivates Na+/H+ exchange, leading to an unfavourably fast restoration of pHi and a second time to Na+ and Ca++ i overflow.

High Ca++ i is assumed to be one of the main reasons for ischemic and reperfusion injury, like arrhythmias, myocardial contracture, stunning and necrosis.

It seems that the inhibition of Na+/H+ exchange can interrupt this process at an early phase and prevent or delay the consequences of ischemia and reperfusion as demonstrated by numerous investigators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circulat Res 60:153–168

    Google Scholar 

  2. Anderson SE, Murphy E, Steenbergen C, London RE, Cala PM (1990) Na−H exchange in myocardium: effects of hypoxia and acidification on Na and Ca. Am J Physiol 259:C940-C948

    Google Scholar 

  3. Aronson PS (1985) Kinetic properties of the plasma membrane Na+/H+-exchanger. Ann Rev Physiol 47:545–560

    Google Scholar 

  4. Avkiran M, Ibuki C (1992) Reperfusion-induced arrhythmias — a role for washout of extracellular protons? Circulat Res 71:1429–1440

    Google Scholar 

  5. Barry WH, Peeters GA, Rasmussen CAF, Cunningham MJ (1987) Role of changes in [Ca++]i in energy deprivation contracture. Circulat Res 61:726–734

    Google Scholar 

  6. Beers MF, Carty SE, Johnson RG, Scarpa A (1982) H+-ATPase and catecholamine transport in chromaffin granules. Ann NY Acad Sci 402:116–133

    Google Scholar 

  7. Beuckelmann DJ, Wier WG (1989) Sodium-calcium exchange in guinea-pig cardic cells: Exchange current and changes in intracellular Ca++. J Physiol 414:499–520

    Google Scholar 

  8. Blanchard EM, Solaro RJ (1984) Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. Circulat Res 55:382–391

    Google Scholar 

  9. Borgers M, Piper HM (1986) Calcium shifts in anoxic cardiac myocytes: A cytochemical study. J Mol Cell Cardiol 18:439–448

    Google Scholar 

  10. Camacho SA, Lanzer P, Toy J, Gober J, Valenza M, Botvinick EH, Weiner MW (1988) In vivo alterations of high-energy phosphates and intracellular pH during reversible ischemia in pigs: A 31P magnetic resonance spectroscopy study. Amer Heart J 116:701–708

    Google Scholar 

  11. Cingolani HE, Mattiazzi AR, Blesa ES, Conzalez HE (1970) Contractility in isolated mammalia heart muscle after acid-base changes. Circulat Res 26:269–278

    Google Scholar 

  12. Cobbe SM, Poole-Wilson PA (1980) Tissue acidosis in myocardial hypoxia. J Mol Cell Cardiol 12:761–770

    Google Scholar 

  13. Cobbe SM, Poole-Wilson PA (1980) The time of onset and severity of acidosis in myocardial ischaemia. J Mol Cell Cardiol 12:745–760

    Google Scholar 

  14. Coetzee WA, Opie LH (1987) Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. Circulat Res 61:157–165

    Google Scholar 

  15. Corr PB, Gillis RA (1978) Autonomic neutral influences on the dysrhythmias resulting from myocardial infarction. Circulat Res 43:1–9

    Google Scholar 

  16. Dennis SC, Coetzee WA, Cragoe EJ, Opie LH (1990) Effects of proton buffering and of amiloride derivatives on reperfusion arrhythmias in isolated rat hearts. Circulat Res 66:1156–1159

    Google Scholar 

  17. Dennis SC, Gevers W, Opie LH (1991) Protons in ischemia: Where do they come from; Where do they go to? J Mol Cell Cardiol 23:1077–1086

    Google Scholar 

  18. Duan J, Karmazyn M (1992) Protective effects of amiloride on the ischemic reperfused rat heart. Relation to mitochondrial function. Europ J Pharmacol 210:149–157

    Google Scholar 

  19. Duff HJ, Lester WM, Rahmberg M (1988) Amiloride, antiarrhythmic and electrophysiological activity in the dog. Circulation 78:1469–1477

    Google Scholar 

  20. Elliot AC, Smith GL, Eisner DA, Allen DG (1992) Metabolic changes during ischaemia and their role in contractile failure in isolated ferret hearts. J Physiol 454:467–490

    Google Scholar 

  21. Ellis D, MacLeod KT (1985) Sodium-dependent control of intracellular pH in Purkinje fibers of sheep heart. J Physiol 359:81–105

    Google Scholar 

  22. Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscle. J Physiol 276:233–255

    Google Scholar 

  23. Fralix TA, Murphy E, London RE, Steenbergen C (1993) Protective effects of adenosine in the perfused rat heart: changes in metabolism and intracellular ion homeostasis. Am J Physiol 264:C986-C994

    Google Scholar 

  24. Fralix TA, Steenbergen C, London RE, Murphy E (1993) Glibenclamide does not abolish the protective effect of preconditioning on stunning in the isolated perfused rat heart. Cardiovasc Res 27:630–637

    Google Scholar 

  25. Frelin C, Vigne P, Lazdunski M (1984) The role of Na+/H+ exchange system in cardiac cells in relation to the control of the internal Na+ concentration. J Biol Chem 259:8880–8885

    Google Scholar 

  26. Frelin C, Vigne P, Lazdunski M (1985) The role of Na+/H+ exchange system in the regulation of the internal pH in cultured cardiac cells. Eur J Biochem 149:1–4

    Google Scholar 

  27. Garlick PB, Radda GK, Seeley PJ (1979) Studies of acidosis in the ischemic heart by phosphorus nuclear magnetic resonance. Biochem J 184:547–554

    Google Scholar 

  28. Glitsch HG (1982) Electrogenic Na pumping in the heart. Ann Rev Physiol 44:389–400

    Google Scholar 

  29. Gudbjarnason S, Mathes P, Ravens KG (1970) Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1:325–339

    Google Scholar 

  30. Haigney MCP, Miyata H, Lakatta EG, Stern MD, Silverman HS (1992) Dependence of hypoxic cellular calcium loading on Na+−Ca++ exchange. Circulat Res 71:547–557

    Google Scholar 

  31. Harrison SM, Frampton JE, McCall E, Boyett MR, Orchard CH (1992) Contraction and intracellular Ca++, Na+, and H+ during acidosis in rat ventricular myocytes. Am J Physiol 262:C348-C357

    Google Scholar 

  32. Hearse DJ, Humphrey SM, Bullock GR (1978) The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 10:641–668

    Google Scholar 

  33. Hendrikx M, Mubagwa K, Flameng W (1993) Inhibition of Na+/H+ exchange protects against postischemic dysfunction in isolated, blood perfused rabbit heart. J Mol Cell Cardiol 25:VI P 12 (Abstract)

    Google Scholar 

  34. Imai S, Shi AY, Ishibashi T, Nakazawa M (1991) Na+/H+ exchange is not operative under low flow ischemic conditions. J Mol Cell Cardiol 23:505–517

    Google Scholar 

  35. Ishibashi T, Nakazawa M, Imai S (1993) Ischemic changes in myocardial ionic contents of the isolated perfused rat heart as studies by NMR. Molec Cell Biochem 119:109–120

    Google Scholar 

  36. Jungermann K, Möhler H (1980) Biochemie. Springer-Verlag, Berlin Heidelberg New York pp 165–167

    Google Scholar 

  37. Kaila K, Vaughan-Jones RD (1987) Influence of sodium-hydrogen exchange on intracellular pH, sodium and tension in sheep cardiac Purkinje fibers. J Physiol 390:93–118

    Google Scholar 

  38. Karmazyn M (1988) Amiloride enhances postischemic ventricular recovery: possible role of Na+/H+ exchange. Am J Physiol 255:H608-h615

    Google Scholar 

  39. Kazumasa H, Franklin A, Johnson RG, Grossman W, Morgan JP (1992) Na+/H+; Na+/Ca+ exchange enhance and ATP-sensitive K+ channels ameliorate cell Ca++ rise in ischemia. Circulation 86:1903 (Abstract)

    Google Scholar 

  40. Kentish JC, Nayler WG (1979) The influence of pH on the Ca2+-regulated ATPase of cardiac and white skeletal myofibrils. J Mol Cell Cardiol 11:611–617

    Google Scholar 

  41. Kimura J, Noma A, Irisawa H (1986) Na−Ca exchange current in mammalian heart cells. Nature 319:596–597

    Google Scholar 

  42. Kitakaze M, Weisfeldt ML, Marban E (1988) Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927

    Google Scholar 

  43. Kleber AG (1983) Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circulat Res 52:442–450

    Google Scholar 

  44. Kleyman TR, Cragoe EJ (1988) Antiarrhythmic activity of amiloride: mechanisms. J Membr Biol 105:1–21

    Google Scholar 

  45. Kutryk MJB, Dhalla NS (1988) Alterations in cardiac lysosomal hydrolases following induction of the calcium paradox. Can J Physiol Pharmacol 65/11:2175–2181

    Google Scholar 

  46. Lazdunski M, Frelin C, Vigne P (1985) The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. J Mol Cell Cardiol 17:1029–1042

    Google Scholar 

  47. Lederer WJ, Niggli E, Hadley RW (1990) Sodium-calcium exchange in excitable cells. Fuzzy space. Science 248:283

    Google Scholar 

  48. MacLeod KT (1989) Effects of hypoxia and metabolic inhibition on the intracellular sodium activity of mammalian ventricular muscle. J Physiol 416:455–468

    Google Scholar 

  49. Malliani A, Schwartz PJ, Zanchetti A (1980) Neural mechanisms in life-threatening arrhythmias. Amer Heart J 100:705–715

    Google Scholar 

  50. Malloy CR, Buster DC, Margarida M, Castro M, Geraldes CFGC, Jeffrey FMH, Sherry AD (1990) Influence of global ischemia on intracellular sodium in the perfused rat heart. Magn Reson Med 15:33–44

    Google Scholar 

  51. Maron R (1989) Functional and metabolic protection by Na+/H+ exchange inhibition in global ischemia. J Mol Cell Cardiol 21:1226 (Abstract)

    Google Scholar 

  52. Mattiazzi AR, Cingolani HE (1977) Biphasic effect of hypercapnia on myocardial contractility. Arch Int Phys Biochem 85:11–25

    Google Scholar 

  53. Mattiazzi AR, Cingolani HE, Spacapan de Castuma E (1979) Relationship between calcium and hydrogen ions in heart muscle. Am J Physiol 237:H497-H503

    Google Scholar 

  54. Meng HP, Lonsberry BB, Pierce GN (1991) Influence of perfusate pH on the postischemic recovery of cardiac contractile function: Involvement of sodium-hydrogen exchange. J Pharmacol Exp Ther 258:772–777

    Google Scholar 

  55. Miura Y, Kimura J (1989) Sodium-calcium exchange current. Dependence on internal Ca++ and Na+ and competetive binding of external Na and Ca++. J Gen Physiol 93:1129–1145

    Google Scholar 

  56. Moffat MP (1989) Amiloride modifies the response of canine Purkinje fibres to conditions of ischemia und reperfusion. J Mol Cell Cardiol 21:S143 (Abstract)

    Google Scholar 

  57. Mohabir R, Lee HC, Kurz RW, Clusin WT (1991) Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pHi in perfused rabbit hearts. Circulat Res 69:1525–1537

    Google Scholar 

  58. Murphy E, Perlman M, London RE, Steenbergen C (1991) Amiloride delays the ischemia induced rise in cytosolic free calcium. Circulat Res 68:1250–1258

    Google Scholar 

  59. Neely JR, Feuvray D (1981) Metabolic products and myocardial ischemia. Am J Physiol 102:282–291

    Google Scholar 

  60. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 36:413–459

    Google Scholar 

  61. Neely JR, Rovetto MJ, Whitmer JT, Morgan HE (1973) Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225:651–658

    Google Scholar 

  62. Ng LL, Davies JE, Quinn P (1993) Intracellular pH regulation in isolated myocytes from adult rat heart in HCO3-containing and HCO3-free media. Clin Sci 84:133–139

    Google Scholar 

  63. Ng ML, Levy MN, Zieske HA (1967) Effects of changes of pH and carbon dioxide tension on left ventricular performance. Am J Physiol 213:115–120

    Google Scholar 

  64. Oh JK, Shub C, Ilstrup DM, Reeder GS (1985) Creatine kinase release after successful percutaneous transluminal coronary angioplasty. Amer Heart J 109:1225–1231

    Google Scholar 

  65. Opie LH, Coetzee WA (1988) Role of calcium ions in reperfusion arrhythmias: Relevance to pharmacologic intervention. Cardiovasc Drugs Ther 2:623–636

    Google Scholar 

  66. Pannier JL, Leusen I (1968) Contraction characteristics of papillary muscle during changes in acid-base composition of the bathing-fluid. Arch Int Phys Biochem 76:624–634

    Google Scholar 

  67. Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 5:960–973

    Google Scholar 

  68. Phillips JH (1982) Dynamic aspects of chromaffin granule structure. Neuroscience 7:1595–1609

    Google Scholar 

  69. Pierce GN, Maddaford TG, Kroeger EA, Cragoe EJ (1990) Protection by benzamil against dysfunction and damage in rat myocardium after calcium depletion and repletion. Am J Physiol 258:H17-H23

    Google Scholar 

  70. Pike MM, Kitakaze M, Marban E (1990) 23Na-NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259:H1767-H1773

    Google Scholar 

  71. Piwnica-Worms D, Jacob R, Shigeto N, Horres CR, Lieberman M (1986) Na/H exchange in cultured chick heart cells: Secondary stimulation of electrogenic transport during recovery from intracellular acidosis. J Mol Cell Cardiol 18:1109–1116

    Google Scholar 

  72. Poole-Wilson PA (1984) Therapeutic approaches to myocardial infarct size limitation. In: Hearse DJ, Yellon DM (eds) What causes cell death. Raven press, New York, pp 43–60

    Google Scholar 

  73. Poole-Wilson PA (1989) Regulation of intracellular pH in the myocardium; relevance to pathology. Molec Cell Biochem 89:151–155

    Google Scholar 

  74. Rabkin SW (1989) Comparison of the effect of amiloride and its analogue dichlorobenzamil on cardiac chronotropic responses to Ouabain in myocardial cell aggregates in culture. Pharmacology 39:230–239

    Google Scholar 

  75. Rasmussen HH, Cragoe EJ, Ten Eick RE (1989) Na+-dependent activation of Na+−K+ pump in human myocardium during recovery from acidosis. Am J Physiol 256:H256-H264

    Google Scholar 

  76. Regan TJ, Broisman L, Haider B, Eaddy C, Oldewurtel A (1980) Dissociation of myocardial sodium and potassium alterations in mild versus severe ischemia. Am J Physiol 238:H575-H580

    Google Scholar 

  77. Rouslin W (1983) Protonic inhibition of the mitochondrial oligomycin-sensitive adenosine 5′-triphosphatase in ischemic and autolyzing cardiac muscle. J Biol Chem 258:9657–9661

    Google Scholar 

  78. Rouslin W, Erickson JL (1986) Factors affecting loss of mitochondrial functioning in autolyzing cardiac muscle. J Mol Cell Cardiol 18:1187–1195

    Google Scholar 

  79. Sack S, Mohri M, Schwarz ER, Arras M, Schaper J, Schaper W (1992) Inhibition of Na+/H+ exchange prevents ventricular fibrillation and preserves function in porcine stunned myocardium. J Mol Cell Cardiol 24:S92 (Abstract)

    Google Scholar 

  80. Schadler M (1967) Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten kontraktilen Strukturen verschiedener Muskelarten. Pfluegers Arch 296:70–90

    Google Scholar 

  81. Schaffer SW, Safer B, Ford C, Illingworth J, Williamson JR (1978) Respiratory acidosis and its reversibility in perfused rat heart: regulation of citric acid cycle activity. Am J Physiol 234:H40-H51

    Google Scholar 

  82. Schelberg HR, Buxton D (1988) Insights into coronary artery disease gained from metabolic imaging. Circulat Res 78:496–505

    Google Scholar 

  83. Scheufler E, Henrichs M, Guttmann I, Mozes A, Wilffert B (1993) Effect of the Na/H exchange inhibitor Ethyl-Isopropyl-Amiloride (EIPA) during ischaemia and reperfusion. Brit J Pharmacol 108:118P

    Google Scholar 

  84. Scholz W, Albus U, Lang HJ, Linz W, Martorana PA, Englert HC, Schölkens BA (1993) Hoe 694, a new Na+/H+ exchange inhibitor and its effects in cardiac ischaemia. Brit J Pharmacol 109:562–568

    Google Scholar 

  85. Scholz W, Albus U, Linz W, Martorana P, Lang HJ, Schölkens BA (1992) Effects of Na+/H+ exchange inhibitors in cardiac ischemia. J Mol Cell Cardiol 24:731–739

    Google Scholar 

  86. Scholz W, Albus U, Linz W, Schölkens BA (1991) Effect of Na+/H+ exchange inhibition in cardiac ischemia. Eur Heart J 12 (Suppl):124 (Abstr)

    Google Scholar 

  87. Schömig A, Kurz T, Richardt G, Schömig E (1988) Neuronal sodium homoeostasis and axoplasmic amine concentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circulat Res 63:214–226

    Google Scholar 

  88. Schömig A, Richardt G (1990) The role of catecholamines in ischemia. J Cardiovasc Pharmacol 16:S105-S112

    Google Scholar 

  89. Sharma GP, Varley KG, Kim SW, Barwinsky J, Cohen M, Dhalla NS (1975) Alterations in energy metabolism and ultrastructure upon reperfusion of the ischemic myocardium after coronary occlusion. Am J Cardiol 36:234–243

    Google Scholar 

  90. Shen AC, Jennings RB (1972) Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol 67:417–440

    Google Scholar 

  91. Smith HW (1926) The actions of acids on turtle muscle with reference to the penetration of anions. Am J Physiol 76:411–447

    Google Scholar 

  92. Steenbergen C, Deleeuw G, Rich T, Williamson JR (1977) Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circulat Res 41:849–858

    Google Scholar 

  93. Steenbergen C, Murphy E, Levy L, London RE (1987) Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circulat Res 60:700–707

    Google Scholar 

  94. Steenbergen C, Murphy E, Watts JA, London RE (1990) Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circulat Res 66:135–146

    Google Scholar 

  95. Steenbergen C, Perlman ME, London RE, Murphy E (1993) Mechanisms of preconditioning: ionic alterations. Circulat Res 72:112–125

    Google Scholar 

  96. Stute N, Trendelenburg U (1984) The outward transport of axoplasmic noradrenaline induced by a rise of the sodium concentration in the adrenergic nerve endings of the rat vas deferens. Naunyn Schmiedebergs Arch Pharmacol 327:124–132

    Google Scholar 

  97. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca++ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circulat Res 65:1045–1056

    Google Scholar 

  98. Tani M, Neely JR (1990) Na+ accumulation increases Ca++ overload and impairs function in anoxis rat heart. J Mol Cell Cardiol 22:57–72

    Google Scholar 

  99. Tonnessen TI, Sandvig K, Olsnes S (1990) Role of Na+−H+ and Cl−HCO3-antiports in the regulation of cytosolic pH near neutrality. Am J Physiol 258:C1117-C1126

    Google Scholar 

  100. Vandenberg JI, Metcalfe JC, Grace AA (1993) Mechanisms of pHi recovery after global ischemia in the perfused heart. Circulat Res 72:993–1003

    Google Scholar 

  101. Vaughan-Jones RD, Wu ML (1990) Extracellular H+ inactivation of Na+−H+ exchange in the sheep cardiac Purkinje fibre. J Physiol 428:441–466

    Google Scholar 

  102. Wallert MA, Fröhlich O (1989) Na+−H+ exchange in isolated myocytes from adult rat heart. Am J Physiol 26:C207-C213

    Google Scholar 

  103. Wang HH, Katz RL (1965) Effects of changes in coronary blood pH on the heart. Circulat Res 17:114–122

    Google Scholar 

  104. Weiss ES, Hoffmann EJ, Phelps ME, Welch MJ, Henry PD, Ter-Porgossian MM, Sobel BE (1976) External detection and visualization of myocardial ischemia with11C-substrates in vitro and in vivo. Circulat Res 39:24–32

    Google Scholar 

  105. Weiss RG, Lakatta EG, Gerstenblith G (1990) Effects of amiloride on metabolism and contractility during reoxygenation in perfused rat heart. Circulat Res 66:1012–1022

    Google Scholar 

  106. Weissberg PL, Little PJ, Cragoe EJ, Bobik A (1989) The pH of spontaneously beating cultured rat heart cells is regulated by an ATP-calmodulin-dependent Na+/H+ antiport. Circulat Res 64:676–685

    Google Scholar 

  107. Williamson JR, Schaffer SW, Ford C, Safer B (1976) Contribution of tissue acidosis to ischemic injury in the perfused rat heart. Circulation 53:I3-I14

    Google Scholar 

  108. Winkler H, Apps DK, Fischer-Colbrie R (1986) The molecular function of adrenal chromaffin granules: established facts and unresolved topics. Neuroscience 18:261–290

    Google Scholar 

  109. Wollenberger A, Krause EG (1968) Metabolic control characteristics of the acutely ischemic myocardium. Am J Cardiol 22:349–359

    Google Scholar 

  110. Wright J, Maridonneau-Parini I, Cragoe EJ, Schwartz JH, Tauber AI (1988) The role of the Na+/H+ antiporter in human neutrophil NADPH-oxidase activation. J Leukocyte Biol 43:183–186

    Google Scholar 

  111. Zhao-Ping L, Chao-Shu T, Jing-Yi S (1991) Role of Na+−Ca++ exchange system in the pathogenesis of myocardial Ischemia-Reperfusion damage. Science in China 34:599–605

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, W., Albus, U. Na+/H+ exchange and its inhibition in cardiac ischemia and reperfusion. Basic Res Cardiol 88, 443–455 (1993). https://doi.org/10.1007/BF00795411

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795411

Key words

Navigation