Soviet Powder Metallurgy and Metal Ceramics

, Volume 25, Issue 11, pp 873–878 | Cite as

Creep of porous compacts under the action of a uniaxial tensile stress during heating. I. Mechanism of creep of high-porosity compacts

  • Ya. E. Geguzin
  • V. P. Matsokin
  • D. V. Pluzhnikova
  • Fayad Hussein
Theory and Technology of Sintering, Thermal, and Chemicothermal Treatment Processes


Tensile Stress Uniaxial Tensile Uniaxial Tensile Stress Porous Compact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. E. Geguzin, “Diffusional deformation of porous crystalline structures,” Fiz. Tverd. Tela,17, 1950–1954 (1975).Google Scholar
  2. 2.
    Ya. E. Geguzin and Yu. I. Klinchuk, “Mechanism and kinetics of the initial stage of solidphase sintering of compacts from powders of crystalline solids (sintering ‘activity’),” Poroshk. Metall., No. 7, 17–25 (1976).Google Scholar
  3. 3.
    R. Raj and M. F. Ashby, “Grain boundary sliding and diffusional creep,” Metall. Trans.,2, No. 4, 1113–1127 (1971).Google Scholar
  4. 4.
    R. O. Andrievs'kii and I. M. Fedorchenko, “Plastic deformation phenomena in the sintering of silver porous solids,” Dop. Akad. NaukUkr. RSR, No. 5, 531–534 (1958).Google Scholar
  5. 5.
    I. M. Fedorchenko and R. O. Andrievs'kii, “Effect of compressive stress on the sintering shrinkage of porous solids,” Dop. Akad. Nauk Ukr. RSR, No. 3, 281–284 (1959).Google Scholar
  6. 6.
    R. A. Gregg and F. N. Rhines, “Surface tension and the sintering force in copper,” Metall. Trans.,4, No. 5, 1365–1374 (1973).Google Scholar
  7. 7.
    E. H. Algentinger, “Relating microstructure and sintering force,” Int. J. Powder Metall. Powder Technol.,11, No. 3, 195–203 (1975).Google Scholar
  8. 8.
    Ya. E. Geguzin, “Investigation of the sintering of metal powders at constant heating rate,” Fiz. Met. Metalloved.,6, No. 4, 650–656 (1958).Google Scholar
  9. 9.
    “Diffusion in metals,” in: Metals Reference Book (ed. C. J. Smithells), London-Boston (1976), pp. 860–939.Google Scholar
  10. 10.
    F. R. N. Nabarro, “Deformation of crystals by the motion of single ions,” Transactions of a Conference on the Strength of Solids, Physical Society (1948), pp. 75–90.Google Scholar
  11. 11.
    C. Herring, “Diffusional viscosity of a polycrystalline solid,” J. Appl. Phys.,21, No. 5, 437–445 (1950).Google Scholar
  12. 12.
    I. M. Lifshits, “Theory of diffusional viscous flow of polycrystalline solids,” Zh. Eksp. Teor. Fiz.,44, No. 4, 1349–1367 (1963).Google Scholar
  13. 13.
    R. L. Coble, “A model for boundary diffusion controlled creep in polycrystalline materials,” J. Appl. Phys.,34, No. 6, 1679–1682 (1963).Google Scholar
  14. 14.
    Ya. E. Geguzin and L. I. Glazman, “Initial stage of densification (sintering) of powder compacts in a nonuniform temperature field,” Poroshk. Metall., No. 12, 14–19 (1984).Google Scholar
  15. 15.
    K. Marukawa, “Dislocation motion in copper single crystals,” J. Phys. Soc. Jpn.,22, No. 2, 499–510 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Ya. E. Geguzin
    • 1
  • V. P. Matsokin
    • 1
  • D. V. Pluzhnikova
    • 1
  • Fayad Hussein
    • 1
  1. 1.Kharkov State UniversityUSSR

Personalised recommendations