Skip to main content
Log in

Alteration of vascular endothelium and endothelium smooth muscle interaction after carbogen gas perfusion of isolated rat and guinea pig heart

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The aim of the study was to alter the vascular endothelium of the mammalian myocardium with respect to coronary flow regulation and vascular permeability. For this purpose, carbogen gas perfusion (GP) of Langendorff-type isolated rat and guinea pig heart was chosen. Perfusion of the hearts with carbogen gas was possible, as well as replacement of the GP by fluid perfusion. The energetic and mechanical state, the creatine kinase release, and the electron microscopic examination of the rat heart indicated only a moderate to minimal alteration of the cardiomyocytes after GP. As a result of GP a massive alteration of the vascular endothelium could be demonstrated in the rat heart, based on the release of the cytosolic endothelial marker enzyme, purine nucleoside phosphorylase, the partly altered vascular permeability and the morphologically detected endothelial damage to arterioles, capillaries and venules. Moreover, the reduced coronary flow response to short periods of anoxia (rat, guinea pig) and the inverted flow response to serotonin administration with maintained response to sodium nitroprusside (rat) in the post-gas perfusion period reflected an alteration of endothelial smooth muscular interaction in the rat and guinea pig heart. Furthermore, the distensibility of the coronary vasculature was increased in the rat and guinea pig heart in the post-gas perfusion period, where a relative autoregulatory behavior was maintained (rat) or partly maintained (guinea pig) in passively predilated vessels. In conclusion, carbogen gas perfusion of isolated hearts allows to induce preferred alteration of endothelium and endothelium-smooth muscle interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anversa P, Levicky V, Beghi, C., McDonald SL, Kikkawa Y (1983) Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res 52:57–64

    Google Scholar 

  2. Arnold G, Müller-Ruchholtz ER, Lochner W (1968) The prolongation of the survival time of ischemic hearts by perfusing the coronary arteries with gaseous oxygen. Ärztliche Forschung 22:257–264

    Google Scholar 

  3. Bassingthwaighte JB, Yipintsoi T, Harvey RB (1974) Microvasculature of the dog left ventricular myocardium. Microvasc Res 7:229–249

    Google Scholar 

  4. Bünger R, Haddy FJ, Querengässer A, Gerlach E (1975) An isolated guinea pig heart preparation with in vivo like features. Pflügers Arch 353:317–326

    Google Scholar 

  5. Burns BD, Robson JG, Smith GK (1958) The survival of mammalian tissues perfused with intravascular gas mixtures of oxygen and carbon dioxide. Can J Biochem Physiol 36:499–504

    Google Scholar 

  6. Davies PF (1989) How do vascular endothelial cells respond to flow? NIPS 4:22–25

    Google Scholar 

  7. Decking UKM, Jüngling E, Kammermeier H (1988) Interstitial transudate concentration of adenosine and inosine in rat and guinea pig hearts. Am J Physiol 254:H1125–H1132

    Google Scholar 

  8. Döring HJ, Dehnert H (1988) Testing the Langendorff-heart for perfect function. In: Döring HJ & Dehnert (eds) The Isolated Perfused Heart According to Langendorff. Biomesstechnik, March, pp 65–81

  9. Dole WP (1987) Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29:293–323

    Google Scholar 

  10. Dwenger A, Trautschold I (1983) Purine-nucleoside phosphorylase. In: Bergmeyer HU (ed) Methods of Enzymatic Analysis. Chemie, Weinheim, pp 382–392

    Google Scholar 

  11. Gabel LP, Bihler I, Dresel PE (1966) Contractility, metabolism and pharmacological reactions of isolated gas-perfused cat hearts. Circ Res 19:891–902

    Google Scholar 

  12. Gerlach E, Nees S, Becker BF (1985) The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 80:459–474

    Google Scholar 

  13. Harlan JM (1985) Leukocyte-endothelial interactions. Blood 65:513–525

    Google Scholar 

  14. Heinz F, Reckel S, Pilz R, Kalden JR (1980) A new spectrophotometric assay for enzymes of purine metabolism: III. Determination of purine nucleoside phosphorylases. Enzyme 25:44–49

    Google Scholar 

  15. Hüser M, Stegeman E, Kammermeier H (1993) Enzyme release from cardiomyocytes induced by functional load or irreversible injury? Pflügers Arch 422:R74 Abstr

    Google Scholar 

  16. Jüngling E, Dautzenberg R, Mottaghy K, Kammermeier H (1990) Ein neues Meßgerät zur schnellen Bestimmung des Sauerstoffgehaltes im Blut und anderen Biofluiden. Biomed Tech 35 (Suppl.): 92–93

    Google Scholar 

  17. Jung T (1982) Die Bestimmung des kapillären Transfers niedermolekularer Substanzen an isoliert perfundierten Rattenherzen mittels Kurzzeitapplikation unter besonderer Berücksichtigung des Glucose-und Wassertransfers. Dissertation Med Fak RWTH Aachen

  18. Ku DD (1987) Unmasking of thrombin vasoconstriction in isolated perfused dog hearts after intracoronary infusion of air embolus. J Pharmacol Exp Ther 243:571–576

    Google Scholar 

  19. Kuo L, Chilian WM, Davis MJ (1990) Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66:860–866

    Google Scholar 

  20. Lüscher TF, Richard V, Tschudi M, Yang Z, Boulanger C (1990) Endothelial control of vascular tone in large and small coronary arteries. J Am Coll Cardiol 15:519–527

    Google Scholar 

  21. Magnus R (1902) Die Tätigkeit des überlebenden Säugetierherzens bei Durchströmung mit Gasen. Naunyn-Schmiedeberg Arch Exp Path Pharm 47:200–208

    Google Scholar 

  22. Mall G, Mattfeldt T, Rieger P, Volk B, Frolov VA (1982) Morphometric analysis of the rabbit myocardium after chronic ethanol feeding: early capillary changes. Basic Res Cardiol 77:57–67

    Google Scholar 

  23. Mankad PS, Chester AH, Yaucoub MH (1991) 5-Hydroxytryptamine mediated enothelium dependent coronary vasodilation in the isolated rat heart by the release of nitric oxide. Cardiovasc Res 25:244–248

    Google Scholar 

  24. Mellander S (1988) Myogenic mechanisms in local vascular control. Acta Physiol Scand 133 (Suppl. 571): 25–41

    Google Scholar 

  25. Milner P, Ralevic V, Hopwood AM, Fehér E, Lincoln J, Kirkpatrick KA, Burnstock G (1989) Ultrastructural localisation of substance P and choline acetyltransferase in endothelial cells of rat coronary artery and release of substance P and acetylcholine during hypoxia. Experientia 45:121–125

    Google Scholar 

  26. Nees S, Herzog V, Becker BF, Böck M, Des Rosiers C, Gerlach E (1985) The coronary endothelium: a highly active metabolic barrier for adenosine. Basic Res Cardiol 80:515–529

    Google Scholar 

  27. Park KH, Rubin LE, Gross SS, Levi R (1992) Nitric oxide is a mediator of hypoxic coronary vasodilatation: Relation to adenosine and cyclooxygenase-derived metabolites. Circ Res 71:992–1001

    Google Scholar 

  28. Rubio VR, Wiedmeier T, Berne RM (1972) Nucleoside phosphorylase: localization and role in the myocardial distribution of purines. Am J Physiol 222:550–555

    Google Scholar 

  29. Sabiston DC, Talbert JL, Riley LH, Blalock A (1959) Maintenance of the heart beat by perfusion of the coronary circulation with gaseous oxygen. Ann Surg 150:361–370

    Google Scholar 

  30. Stewart DJ, Holtz J, Pohl U, Bassenge E (1987) Balance between endothelium-mediated dilating and direct constricting actions of serotonin on resistance vessels in the isolated rabbit heart. Eur J Pharmacol 143:131–134

    Google Scholar 

  31. Wienen W, Kammermeier H (1988) Intra- and extracellular markers in interstitial transudate of perfused rat hearts. Am J Physiol 254:H785–H794

    Google Scholar 

  32. Wiest E, Trach V, Dämmgen J (1989) Removal of endothelial function in coronary resistance vessels by saponin. Basic Res Cardiol 84:469–478

    Google Scholar 

  33. Wienen W (1987) Charakterisierung von Freisetzungsmechanismen intrazellulärer Metabolite und Enzyme durch die Analyse der interstitiellen Flüssigkeit isoliert perfundierter Rattenherzen. Dissertation Med Fak RWTH Aachen

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mertens, H., Ballhausen, T., Hollweg, H.G. et al. Alteration of vascular endothelium and endothelium smooth muscle interaction after carbogen gas perfusion of isolated rat and guinea pig heart. Basic Res Cardiol 89, 322–340 (1994). https://doi.org/10.1007/BF00795201

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795201

Key words

Navigation