Skip to main content
Log in

No adrenergic constriction in isolated coronary arterioles?

  • Original Contribution
  • Invited Comment
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Angus JA, Brazenor RM, Le Duc MA (1983) Responses of dog large coronary arteries to constrictor and dilator substances: implications for the cause and treatment of variant angina pectoris. Am J Cardiol 52: 52A-60A

    Google Scholar 

  2. Angus JA, Cocks TM, Satoh K (1986) α2 and endothelium-dependent relaxation in canine large arteries. Brit J Pharmacol 88: 767–777

    Google Scholar 

  3. Bache RJ, Dai X-Z, Herzog CA, Schwartz JS (1987) Effects of nonselective and selective α1-adrenergic blockade on coronary blood flow during exercise. Circ Res 61 (Suppl II): II-36–II-41

    Google Scholar 

  4. Baumgart D, Ehring T, Kowallik P, Guth BD, Krajcar M, Heusch G (1993) Impact of α-adrenergic coronary vasoconstriction on the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 73: 869–886

    Google Scholar 

  5. Billman GE, Randall DC (1981) Mechanisms mediating the coronary vascular response to behavioral stress in the dog. Circ Res 48: 214–223

    Google Scholar 

  6. Chilian WM (1991) Functional distribution of α1-and α2-adrenergic receptors in the coronary microcirculation. Circulation 84: 2108–2122

    Google Scholar 

  7. Chilian WM, Ackell PH (1988) Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62: 216–225

    Google Scholar 

  8. Chilian WM, Boatwright RB, Shoji T, Griggs DM Jr (1981) Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res 49: 866–876

    Google Scholar 

  9. Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary α-adrenergic vasoconstriction. Circ Res 64: 376–388

    Google Scholar 

  10. Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–630

    Google Scholar 

  11. DiSalvo J, Parker PE, Scott JB Haddy FJ (1971) Carotid baroceptor influence on coronary vascular resistance in the anesthetized dog. Am J Physiol 221: 156–160

    Google Scholar 

  12. Feigl EO (1968) Carotid sinus reflex control of coronary blood flow. Circ Res 23: 223–237

    Google Scholar 

  13. Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205

    Google Scholar 

  14. Gwirtz PA, Overn SP, Mass HJ, Jones CE (1986) 71-4 constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 250: H1117-H1126

    Google Scholar 

  15. Heusch G (1990) α-Adrenergic mechanisms in myocardial ischemia. Circulation 81: 1–13

    Google Scholar 

  16. Heusch G, Ross J Jr eds (1991) Adrenergic Mechanisms in Myocardial Ischemia. Springer-Verlag, New York

    Google Scholar 

  17. Heyndrickx GR, Muylaert P, Pannier JL (1982) α-Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242: H805-H809

    Google Scholar 

  18. Huang AH, Feigl EO (1988) Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62: 286–298

    Google Scholar 

  19. Jones CJH, DeFily DV, Patterson JL, Chilian WM (1993) Endothelium-dependent relaxation competes with α2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87: 1264–1274

    Google Scholar 

  20. Mohrman DE, Feigl FO (1978) Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42: 79–86

    Google Scholar 

  21. Murray PA, Vatner SF (1979) α-Adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45: 654–660

    Google Scholar 

  22. Müller-Schweinitzer E (1980) The mechanism of ergometrine-induced coronary arterial spasm: In vitro studies on canine arteries. J Cardiovasc Pharmacol 2: 645–655

    Google Scholar 

  23. Rimele TJ, Rooke TW, Aarhus LL, Vanhoutte PM (1983) Alpha-1 adrenoceptors and calcium in isolated canine coronary arteries. J Pharmacol Exp Ther 226: 668–672

    Google Scholar 

  24. Saito Y, Eraslan A, Lockard V, Hester RL (1994) Role of venular endothelium in control of arteriolar diameter during functional hyperemia. Am J Physiol 267: H1227-H1231

    Google Scholar 

  25. Seitelberger R, Guth BD, Heusch G, Lee J-D, Katayama K, Ross J Jr (1988) Intracoronary α2 receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62: 436–442

    Google Scholar 

  26. Tigno XT, Ley K, Pries AR, Gaehtgens P (1989) Venulo-arteriolar communication and propagated response. A possible mechanism for local control of blood flow. Pflügers Arch 414: 450–456

    Google Scholar 

  27. Toda N (1981) Response of isolated monkey coronary arteries to catecholamines and to transmural electrical stimulation. Circ Res 1228–1236

  28. Toda N (1983) Isolated human coronary arteries in response to vasoconstrictor substances. Am J Physiol 245: H937-H941

    Google Scholar 

  29. Turlapaty PDMV, Altura BM (1982) Propranolol induces contractions of canine small and large coronary arteries. Basic Res Cardiol 77: 68–81

    Google Scholar 

  30. van Breemen C, Siegel B (1980) The mechanism of α-adrenergic activation of the dog coronary artery. Circ Res 46: 426–429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigl, E.O. No adrenergic constriction in isolated coronary arterioles?. Basic Res Cardiol 90, 70–72 (1995). https://doi.org/10.1007/BF00795125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795125

Keywords

Navigation