Skip to main content
Log in

Excitation-contraction coupling in hibernating myocardium

  • Focussed Issue: Myocardial hibernation
  • Short-Term Hibernation: Evidence for Downregulation of Contractile Function and Metabolic Adaptation
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tennant R, Wiggers CJ (1935) The effect of coronary occlusion on myocardiol contraction. Am J Physiol 112: 351–361

    Google Scholar 

  2. Koretsune Y, Corretti M, Kusuoka H, Marban E (1991) Mechanism of ischemic contractile failure: inexcitability, metabolite accumulation, or vascular collapse? Circ Res 68: 252–262

    Google Scholar 

  3. Braunwald E, Rutherford JD (1986) Reversible ischemic left ventricular dysfunction: Evidence for the “hibernating myocardium”. J Am Coll Cardiol 8: 1467–1470

    Google Scholar 

  4. Rahimtoola SH, Griffith GC (1989) The hibernating myocardium. Am Heart J 117: 211–221

    Google Scholar 

  5. Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205

    Google Scholar 

  6. Marban E (1991) Myocardial stunning and hibernation: the physiology behind the colloquialisms. Circulation 83: 681–688

    Google Scholar 

  7. Atar D, Gao WD, Marban E (1995) Alterations of excitation-contraction coupling in stunned myocardium and in failing myocardium. J Mol Cell Cardiol, in press

  8. Kitakaze M, Marban E (1989) Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol (Lond) 414: 455–472

    Google Scholar 

  9. Wier WG, Yue DT (1986) Intracellular [Ca2+] transients underlying the short-tern force-interval relationship in ferret ventricular myocardium. J Physiol (Lond) 376: 507–530

    Google Scholar 

  10. Marban E, Kitakaze M, Chacko VP, Pike MM (1988) Ca2+ transients in perfused hearts revealed by gated19F NMR spectroscopy. Circ Res 63: 673–678

    Google Scholar 

  11. Allen DG, Orchard CH (1986) Myocardial contractile function during ischemia and hypoxia. Circ Res 60: 153–168

    Google Scholar 

  12. Opie LH (1965) Coronary flow rate and perfusion pressure as determinants of mechanical function and oxidative metabolism of isolated perfused rat heart. J Physiol 180: 529–541

    Google Scholar 

  13. Arnold G, Kosche F, Miessner E, Neitzert A, Lochner W (1968) The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflügers Archiv 299: 339–356

    Google Scholar 

  14. Poche R, Arnold G, Gahlen D (1971) The influence of coronary perfusion pressure on metabolism and ultrastructure of the myocardium of the arrested aerobically perfused isolated guinea-pig heart. Virchows Archiv 8: 252–266

    Google Scholar 

  15. Schouten VJ, Allart CP, Westerhof N (1992) Effect of perfusion pressure on force of contraction in thin papillary muscles and trabeculae from rat heart. J Physiol (Lond) 491: 585–604

    Google Scholar 

  16. Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT (1988) Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing Indo 1. Circulation 78: 1047–1059

    Google Scholar 

  17. Kihara Y, Grossman W, Morgan JP (1989) Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 65: 1029–1044

    Google Scholar 

  18. Camacho SA, Figueredo VM, Brandes R, Weiner MW (1993) Ca2+-dependent fluorescence transients and phosphate metabolism during low-flow ischemia in rat hearts. Am J Physiol 256: H114-H122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by N.I.H. R01 44065

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marban, E. Excitation-contraction coupling in hibernating myocardium. Basic Res Cardiol 90, 19–22 (1995). https://doi.org/10.1007/BF00795110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795110

Key words

Navigation