Skip to main content
Log in

Causative role of coronary microvessels for the development and progression of chronic myocardial lesions in spontaneously hypertensive rats (SHR)

  • Original Contributions
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

The pathomechanisms responsible for the development and progression of myocardial alterations in hypertensive heart disease are largely unknown. Using newly developed preparation and measuring procedures in 78 SHR and 82 controls aged 3–78 weeks, topological relations were detected between focal morphological appearances of chronic myocardial ischemia (fml.) and pathological microvessel (mv.) reactions characterized by morphometric signs of chronic contractions. The smallest ramifications are of particular pathogenic importance. A generalized peak of pathological mv. reactions between the 16th and 24th weeks is responsible for the development of first fml. The further progression of the area density of fml. from 1.26±0.85% (24th week) to 31.82±8.60% (78th week) is attributable to the further increase in pathological mv. reactions caused by organ-specific influences. The histological and morphometric findings suggest that the pathological mv. reactions are aggrevated by their own effects at the local level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d:

diameter

fml:

focal myocardial lesions

mv:

microvessel(s)

SDH:

succinodehydrogenase

References

  1. Alabaster V, Davey M (1984) Precapillary vessels: effects of the sympathethic nervous system and of catecholamines. J Cardiovasc Pharmacol 6:365–376

    Google Scholar 

  2. Amann K, Gerber D, Gharehbaghi H, Wiest G, lange B, Ganten U, Mattfeld T, Mall G (1992) Effects of nifedipine and monoxidine on cardiac structure in spontaneously hypertensive rats (SHR-Sp) stereological studies on myocytes, capillaries, arteries and cardiac interstitium. Am J Hypert 5:76–83

    Google Scholar 

  3. Anderson PG, Bishop SP, Digerness SB (1989) Vascular remodeling and improvement of coronary reserve after hydralazine treatment in spontaneously hypertensive rats. Circ Res 64:1127–1136

    Google Scholar 

  4. Anversa P, Capasso JM (1991) Loss of intermediate-sized coronary arteries and capillary proliferation after left ventricular failure in rats. Am J Physiol 260:H1552–H1560

    Google Scholar 

  5. Barka T, Anderson PJ (1965) Histochemistry. Haper & Row New York, Evanston, London

    Google Scholar 

  6. Benninghoff A (1930) Blutgefäße und Herz. In: Möllendorf V (ed) Handbuch der mikroskopischen Anatomie des Menschen. Springer-Verlag, Berlin, Bd 6, T.1:1–225

    Google Scholar 

  7. Blödner R, Kühne C, Mühlig P, Herrmann H-J (1989) Progress in application of the image analysing system Quantimet 720 in the histomorphometry of the microcirculatory system. Gegenbaurs Morph Jahrb 135:115–120

    Google Scholar 

  8. Brown RE (1965) The pattern of the microcirculatory bed in the ventricular myocardium of domestic animals. Am J Anat 116:355–374

    Google Scholar 

  9. Chambers R, Zweifach BW (1946) Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann Y Acad Sci 46:683–694

    Google Scholar 

  10. Cottier H (1980) Pathogenese. Ein Handbuch für die ärztliche Fortbildung. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  11. de Moraes S, Bento AC, de Lima WT (1988) Responsiveness to epinephrine in adult spontaneously hypertensive rats rail artery: preferential mediation by postjunctional α2-adrenoceptors. J Cardiovasc Pharmacol 11:473–477

    Google Scholar 

  12. Dolber PC, Spach MS (1987) Thin collagenous septa in cardiac muscle. Anat Rec 218:45–55

    Google Scholar 

  13. Donohue SJ, Stitzel RE, Head RJ (1988) Time course of changes in the norepinephrine content of tissues from spontaneosly hypertensive and Wistar Kyoto rats. J Pharmacol Exp Ther 245:24–30

    Google Scholar 

  14. Duling BR, Pittmann RN (1975) Oxygen tension: dependent or independent variable in local control of blood flow? Fed Proc 34:2012–2019

    Google Scholar 

  15. Faber JE (1988) In situ analysis of α-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ Res 62:37–50

    Google Scholar 

  16. Faber JE, McGillivray KM, Gettes DR, Gianturo DP (1988) Distribution and control of alphaadrenoceptor function in the mirocirculation. Effect of temperature, pH, and atrial natriuretic factor. blood Vessels 25:34

    Google Scholar 

  17. Factor SM, Minase T, Cho S, Fein F, Capasso JM, Sonnenblick EH (1984) Coronary microvascular abnormalities in the hypertensive diabetic rat. A primary cause of cardiomyopathy? Am J Pathol 116:9–20

    Google Scholar 

  18. Frenzel H, Schwarzkopf B, Flasshove M, Betz P, Motz W, Hort W (1990) Postmortale und bioptische Untersuchungen an den kleinen Arterien des Herzens bei essentieller Hypertonie. Z Kardiol 79 Suppl 1:80

    Google Scholar 

  19. Friberg P, Nordlander M (1990) Influence of left ventricular and coronary vascular hypertrophy on cardiac performance. J Hypertension 8:879–889

    Google Scholar 

  20. Friebel H, Vreden E (1957/1958) Ein Gerät zur Blutdruckmessung an der Ratte. Arch Exp Pathol Pharmakol 232:419–422

    Google Scholar 

  21. Gaasch WH, Zile MR, Hoshino PK, Apstein CS, Blaustein AS (1989) Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 79:872–883

    Google Scholar 

  22. Grände PO, Borgström P, Mellander S (1979) On the nature of basal vascular tone in cat skeletal muscle and its dependence on transmural pressure stimuli. Acta Physiol Scand 107:365–376.

    Google Scholar 

  23. Hammersen F (1971) Anatomie der terminalen Strombahn. Muster — Feinbau — Funktion. Urban und Schwarzenberg, München, Berlin, Wien

    Google Scholar 

  24. Hecht A (1971) Zur fermenthistochemischen Reaktion des Rattenherzmuskels nach temporärer Ischämie. Exp Path 5:28–36

    Google Scholar 

  25. Herrmann HJ, Mühlig P, Kühne C, Läuter J (1979) Automated image analysis for measurements of morphological reactions of blood vessels of the microvascular system. Exp Pathol 17:215–227 and ibid. (1980) 18:140

    Google Scholar 

  26. Herrmann HJ, Mühlig P, Kühne C, Blödner R (1989) Progress in histomorphometry of the microcirculatory system. Gegenbaurs Morphol Jahrb 135:109–114

    Google Scholar 

  27. Herrmann HJ, Moritz V, Kühne C (1992) Structural wall tissue alterations of the microvasculature in the course of spontaneous hypertension of rats. Int J Microcirc: Clin Exp 11:1–29

    Google Scholar 

  28. Herrmann HJ, Mühlig P, Blödner R, Kühne C (1992) Histomorphometry of focal myocardial lesions by means of the automatic image analysis. Exp Toxic Path 44:108–110

    Google Scholar 

  29. Hittinger L, Shannon RP, Boshop SP, Gelpi RJ, Vatner SF (1989) Subendomyocardial exhaustion of blooc flow reserve and increased fibrosis in conscious dogs with heart failure. Circul Res 65:971–980

    Google Scholar 

  30. Houghton JL, Frank MJ, Carr AA, van Dohlen TW, Prisant LM (1990) Relations among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J Am Coll Cardiol 15:43–51

    Google Scholar 

  31. Howe PRC, Rogers PF, Morris MJ, Chalmers JP, Smith RM (1986) Plasma catecholamines and neuropeptide as indices of sympathetic nerve activity in normotensive and stroke-prone spontaneously hypertensive rats. J Cardiovasc Pharmacol 8:1113–1121

    Google Scholar 

  32. Jacobsen NO (1969) The histochemical localization of lactic dehydrogenase isoenzymes in the rat nephron by means of an improved polyvinyl alcohol method. Histochemie 20:250–265

    Google Scholar 

  33. James TN (1990) Morphologic characteristics and functional significance of focal fibromuscular dysplasia of small coronary arteries. Am J Cardiol 65:12G–22G

    Google Scholar 

  34. Johnson PC (1978) Principles of peripheral circulatory control. In: Johnson PC (ed) Peripheral circulation. John Wiley and Sons, New York, pp 111–139

    Google Scholar 

  35. Katz AM (1990) Pathophysiology of congestive heart failure. J Appl Cardiol 5:427–430

    Google Scholar 

  36. Klepzig M, Eisenlohr H, Steindl J, Schmiebusch H, Strauer BE (1987) Media hypertrophy in hypertensive coronary resistance vessels. J Cardiovasc Pharmacol 10 Suppl 6:97–102

    Google Scholar 

  37. Kolin A, Brezina A, Lewis AJ, Norris JW (1989) Quantitative evaluation of myocardial injury induced by acute cerebral ischaemia and its prevention by beta 1 adrenergic blockade. An ultrastructural morphometry study. Brit J Exp Path 70:659–667

    Google Scholar 

  38. Lombard JH, Duling BR (1981) Multiple mechanisms of reactive hyperemia in arterioles of the hamster cheek pouch. Am J Physiol 241:H748–H755

    Google Scholar 

  39. Medgett JC, Hicks PE, Langer SZ (1984) Smooth muscle alpha-2 adrenoceptors mediate vasoconstrictor responses to exogeneous norepinephrine and to sympathetic stimulation to a greater extent in spontaneously hypertensive than in Wistar Kyoto rat tail arteries. J Pharmacol Exp Ther 231:159–166

    Google Scholar 

  40. Noresson E, Hallbäck M, Hjalmarsson Ä (1977) Structural resetting of the coronary vascular bed in spontaneously hypertensive rats. Acta Physiol Scand 101:363–365

    Google Scholar 

  41. Pittman RN (1987) Oxygen delivery and transport in the microcirculation. In: Mc Donagh PF (ed) Microvascular perfusion and transport in health and disease. Karger, Basel, pp 60–79

    Google Scholar 

  42. Punkt K, Erzen J, Krug H, Punkt J, Seidler E (1989) Histomorphometry — the method of choice in quantifying dehydrogenase histochemistry. Acta Histochem 87:63–69

    Google Scholar 

  43. Rakusan K, Wicker P, Abdul-Samad M, Healy B, Turek Z (1987) Failure of swimming exercise to improve capillarization in cardiac hypertrophy of renal hypertensive rats. Circul Res 61:641–647

    Google Scholar 

  44. Sanchez A, Vidal MJ, Martinez-Sierra R, Saiz J (1986) Ontogeny of renal alpha-1 and alpha-2 adrenoceptors in the sponteneously hypertensive rat. J Pharmacol Exp Ther 237:972–979

    Google Scholar 

  45. Seifert J (1967) Histochemische Untersuchungen im Glykogenabbau im experimentellen Myokardinfarkt bei der Ratte. Acta Histochem 26:351–359

    Google Scholar 

  46. Sivertsson R (1970) The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiol Scand Suppl 543

  47. Strauer BE (1990) Significance of coronary circulation in hypertensive heart disease for development and prevention of heart failure. Am J Cardiol 65:34G–41G

    Google Scholar 

  48. Tarazi RC, Dunbar JB (1983) Conclusions and future directions. In: Tarazi RC, Dunbar JB (eds) Cardiac hypertrophy in hypertension. Raven Press, New York, pp 349–352

    Google Scholar 

  49. Tepper SH, Anderson PA (1990) Recovery of heart tissue following focal injury induced by dietary restriction of potassium. Path Res Pract 186:265–282

    Google Scholar 

  50. Tomanek RJ, Aydelotte MR, Butters CA (1990) Late-onset renal hypertension in old rats alters myocardial microvessels. Am J Physiol 259:H1681–H1687

    Google Scholar 

  51. Van Hoeven KH, Factor SM (1990) A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive diabetic heart disease. Circulation 82:848–855

    Google Scholar 

  52. Van der Laarse WJ, Diegenbach PC, Elzinga G (1989) Maximum rate of oxygen consumption and quantitative histochemistry of succinate dehydrogenase in single muscle fibres of xenopus laevis. J Muscle Res Cell Motil 10:221–228

    Google Scholar 

  53. Vetterlein F, Schmidt G (1980) Functional capillary density in skeletal muscle during vasodilation induced by isoprenaline and muscular exercise. Microvasc Res 20:156–164

    Google Scholar 

  54. Wachstein M, Meisel E (1957) Histochemistry of hepatic phosphatase at a physiologic pH. Am J Clin Path 27:13–23

    Google Scholar 

  55. Warnock P, Docherty JR (1986) Further investigation of the sites of vascular alpha1 and alpha2 adrenoceptors in the anesthetized spontaneously hypertensive rat. J Cardiovasc Pharmacol 8:67–70

    Google Scholar 

  56. Wenk H, Meyer U, Ritter J (1970) Beitrag zum histochemischen Nachweis pyridinnucleotidabhängiger Dehydrogenasen; eine halbquantitative Untersuchung. Acta Histochem 38:278–292

    Google Scholar 

  57. Westfall TC, Zhang SQ, Carpentier S, Naes L, Meldrum J (1986) Local modulation noradrenergic neurotransmission in blood vessels of normotensive and hypertensive animals. In: Magro A, Osswald W, Reis D, Vanhoutten P (eds) Central and peripheral mechanisms of cardiovascular regulations. Plenum Press, New York London, pp 111–134

    Google Scholar 

  58. Wicker PA, Tarazi RC (1987) The coronary circulation in hypertensive left ventricular hypertrophy. In: Safar ME (ed) Arterial and venous system in essential hypertension. Martinus Nijhoff Publishers/Academic Publ Group, Dordrecht Boston Lanchester, pp 167–180

    Google Scholar 

  59. Wicker P (1989) Coronary circulation and coronary reserve in the hypertensive heart. In: Safar ME, Fouad-Tarazi F (eds) The heart in hypertension. Kluwer Academic Publishers, Dordrecht, pp 253–269

    Google Scholar 

  60. Woodman OL (1987) The role of α1 and α2-adrenoceptors in the coronary vasoconstrictor responses to neuronally released and exogenous noradrenaline in the dog. Naunyn-Schmiedebergs Arch Pharmacol 336:161–168

    Google Scholar 

  61. Yurenev AP, DeQuattro V, Dereux RB (1990) Hypertensive heart disease: relationship of silent ischemia to coronary artery disease and ventricular hypertrophy. Am Heart J 120:928–933

    Google Scholar 

  62. Zweifach BW (1968) Vasoactive agents in the microcirculation. Fed Proc 27:1399–1402

    Google Scholar 

  63. Zweifach BW, Kovalchek S, DeLano F, Chen P (1981) Micropressor-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension 3:601–614

    Google Scholar 

  64. Zweifach BW (1973) Microcirculation. Am Rev Physiol 35:117–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, H.J., Mühlig, P. Causative role of coronary microvessels for the development and progression of chronic myocardial lesions in spontaneously hypertensive rats (SHR). Basic Res Cardiol 87, 489–502 (1992). https://doi.org/10.1007/BF00795061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795061

Key words

Navigation