Advertisement

Archive of Applied Mechanics

, Volume 63, Issue 3, pp 170–175 | Cite as

Stability of Ziegler's pendulum with eccentric load and load-dependent stiffness

  • A. Guran
  • R. H. Plaut
Originals
  • 110 Downloads

Summary

The stability of Ziegler's pendulum with eccentric load and load-dependent stiffness is considered. It is shown that the flutter load is affected by a support that stiffens as it is compressed, and by eccentricity of the tangential load.

Keywords

Neural Network Complex System Information Theory Nonlinear Dynamics Eccentric Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Stabilität eines Zieglerschen Stabes mit exzentrischen Belastungen und lastabhängiger Steifigkeit

Übersicht

Es wird die Stabilität eines Zieglerschen Stabes untersucht, und zwar unter einer exzentischen Belastung und mit einer lastabhängigen Steifigkeit. Es hat sich gezeigt, daß der Flatterwert der Last, von der Art der Befestigung beeinflußt wird, die steifer wird unter einer zunehmenden Druckbelastung und mit anwachsender Exzentrizität der Tangentiallast.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plaut, R. H.: Column buckling when support stiffens under compression. Trans. ASME Jour. Appl. Mech. 56 (1989) 484Google Scholar
  2. 2.
    Plaut, R. H.: Buckling of shallow arches with supports that stiffen when compressed. Jour. Eng. Mech. 116 (1990) 973–976Google Scholar
  3. 3.
    Plaut, R. H.: Stability and vibration of a column model with load-dependent stiffness. Dyn. Stab. Syst. 6 (1991) 79–88Google Scholar
  4. 4.
    Plaut, R. H.; Cheng, C.-C.: Buckling of frames with load-depenent supports, In: Adeli, H.; Sierakowski, R. L. (eds.) Mechanics computing in 1990's and beyond, Vol. 2, pp. 871–876, New York: ASCE 1991Google Scholar
  5. 5.
    Ziegler, H.: Die Stabilitätskriterien der Elastomechanik. Ing.-Arch. 20 (1952) 49–56Google Scholar
  6. 6.
    Plaut, R. H.: Postbuckling analysis of nonconservative elastic systems. Jour. Struc. Mech. 4 (1976) 395–416Google Scholar
  7. 7.
    Chaudhry, Z.; Rogers, C. A.: Response of composite beams to an internal actuator force. In: Proc. 32nd AIAA/ASME/ ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Part 1, pp. 186–193. Washington, D.C.: AIAA 1991Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Guran
    • 1
  • R. H. Plaut
    • 2
  1. 1.Department of Civil and Environmental EngineeringRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Civil EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations