Soviet Powder Metallurgy and Metal Ceramics

, Volume 28, Issue 8, pp 605–613 | Cite as

The most important tendencies in the development of powder metallurgy. II. Progress in the area of development of new materials (review)

  • I. M. Fedorchenko
Theory and Technology of Sintering Processes and of Heat and Chemicothermal Treatment


Powder Metallurgy Important Tendency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Frank D. Leone, Y. T. Chen, and R. G. Weber, “A new high strength P/M alloy steel,“ in: Processing and Business Machine Applications: National Powder Metallurgy Conference (Montreal, May 24–27, 1982), New York and Princeton (1983), pp. 33–44.Google Scholar
  2. 2.
    Yu. F. Shevchuk, T. A. Roik, A. I. Il'nitskaya, and A. Yu. Barshchevskii, “Antifriction powder metallurgy materials for high-temperature rubbing pairs,” in: The Theory and Technology of Forming and Sintering [in Russian], Inst. Probl. Materialoved. Akad. Nauk UkrSSR, Kiev (1985), pp. 168–171.Google Scholar
  3. 3.
    I. M. Fedorchenko, V. D. Zozulya, Yu. F. Shevchuk, et al., Inventor's Cert. 1114704 USSR. An iron-base sintered antifriction material,” Otkryt. Izobr., No. 35, 63 (1984).Google Scholar
  4. 4.
    I. M. Fedorchenko, N. G. Baranov, V. S. Ageeva, et al., “The tribotechnical characteristics of copper-base powder metallurgy composite materials in high-velocity friction,” Poroshk. Metall., No. 7, 52–56 (1986).Google Scholar
  5. 5.
    K. Kuniya, H. Arakawa, and T. Namekawa, “Reciprocating sliding wear characteristics of copper-carbon fiber composites,” Trans. Jpn. Inst. Met.,28, No. 3, 238–246 (1987).Google Scholar
  6. 6.
    M. Siona, K. Sibata, and K. K. Nissan Dzidosa, Application 61-25040. Jpn. A Heat- and Wear-Resistant Aluminum Alloy, Published Nov. 7, 1986.Google Scholar
  7. 7.
    M. Drozda, “Eigenschaften und Anwendung von Sinterwerkstoffen,” Antiebstechnik,22, 35–37 (1983).Google Scholar
  8. 8.
    Arthur E. Lindemanis, “Boron nitride fiber synthesis from boron oxide precursors,” in: Emerging Processes of Methods of High-Technology Ceramics. Proceedings of the Conference (Raleigh, Nov. 8–10, 1982), Plenum Press, New York-London (1984), pp. 111–121.Google Scholar
  9. 9.
    Domonique Cotto, “Composites: les americains les aiment chauds,” Sci. et Techn., No. 37, 16–21 (1987).Google Scholar
  10. 10.
    S. Shimamure, “Investigation and development of composite materials with a metallic matrix reinforced with fibers according to the Japanese national project,” Dzaire Kagaku,21, No. 1, 39 (1984).Google Scholar
  11. 11.
    “Metal matrix composites offer new opportunities for PM,” MPR. Metal Powder Report,41, No. 2, 161 (1986).Google Scholar
  12. 12.
    J.-J. Huet, “Preparation and properties of oxide dispersion-strengthened ferritic alloy,” in: Sintered Metal-Ceramic Compositions: Proc. 3rd Int. Sch. (New Delhi, Dec. 6–9, 1983), Amsterdam (1984), pp. 197–213.Google Scholar
  13. 13.
    G. A. J. Hack, “Developments in the production of oxide dispersion strengthened super-alloys,” Powder Met.,27, No. 2, 73–79 (1984).Google Scholar
  14. 14.
    Frank W. Heck and Stephen J. Donachie, Patent 4594222 USA. Dispersion Strengthened Low Density Material, Published June 10, 1986.Google Scholar
  15. 15.
    “Panel probes stainless P/M's technical marketing problems,” Mod. Met.,41, No. 2, 66, 68–72 (1985).Google Scholar
  16. 16.
    Karel Protiva, ” V'yzhompraskove metalugrie pro vyrobu rychloreznych oceli,” Hutn. Listy,41, No. 12, 885–887 (1986).Google Scholar
  17. 17.
    D. Duda and V. Arnold, “Pulvermetallurgische Schnellarbeitsstahle fur Werkzeuge: Durch Sintern zu endkonturnahen Formen,” Schweiz. Mashchinenmarkt,87, No. 47, 26–35 (1987).Google Scholar
  18. 18.
    L. N. Sergienko, “The technology and service properties of a tungsten-free powder metallurgy high-speed steel,” in: New Powder Metallurgy Metals: Proceedings of the 15th All-Union Conference (Kiev, No. 19–22, 1985) [in Russian], Inst. Probl. Materialoved. Akad. Nauk UkrSSR, Kiev (1986), pp. 22–27.Google Scholar
  19. 19.
    Terry Scheppard, “Von Pulver zum zahen Werkstoff,” Schweiz. Maschinenmarkt,87, No. 45, 90–91, 93, 95 (1987).Google Scholar
  20. 20.
    M. Hammiuddin, “High strength aluminum-lithium-silicon carbide P/M composites — a review,” Powder Met. Int.,19, No. 5, 28–30 (1987).Google Scholar
  21. 21.
    “Aluminum alloys by mechanical alloying,” Aircr. Eng.,59, No. 6, 20 (1987).Google Scholar
  22. 22.
    V. G. Gopienko, E. A. Savchenko, and V. P. Cherepanov, “Experience in the production of parts of powders of aluminum and its alloys,” in: Powder Metallurgy and Composite Materials and Their Use in Light of the Decisions of the 27th Congress of the Communist Party of the Soviet Union: Materials of a Seminar (Leningrad, Dec. 9–10, 1986) [in Russian], Leningrad, Politekhn. Inst., Leningrad (1986), p. 15.Google Scholar
  23. 23.
    H. C. Neubing, “Production und Eigenschaften von Aluminumpulver fur die Pulvermetallurgie,” in: Internationale Leichtmetalltag (Leoben, June 1981), Leobin (198l), pp. 232–233.Google Scholar
  24. 24.
    S. Abkowitz and D. M. Rowele, “The achievement of wrought tensile and fatigue properties in fully dense elemental blend P/M Ti-6Al-4V alloy manufactured components,” in: Annual Powder Metallurgy Conference Proceedings (Boston, May 18–21, 1986), New York-Princeton (1986), pp. 611–624.Google Scholar
  25. 25.
    F. H. Froes and D. Eylon, “Powder metallurgy of titanium alloys: A critical review,“ in: Titanium: Science and Technology: Proceedings of the 5th Internatinal Conference (Munich, Sept. 10–14, 1984), Vol. 1, Oberursel (1985), pp. 267–268.Google Scholar
  26. 26.
    J. Hartwing, R. Mohs, and J. Willbrand, “The manufacture of powder metallurgy techniques of near-net-shape titanium alloy components,”, pp. 327–332.Google Scholar
  27. 27.
    R. H. Witt, “Current and future opportunities for near-net titanium P/M parts,” in: Titanium-1986: Proceedings of the Technical Program of the International Conference, Vol. 2, Dayton (1986), pp. 801–815.Google Scholar
  28. 28.
    G. F. Yolton, “P/M beta titanium alloys for landing gear application,” in: Annual Powder Metallurgy Conference Proceedings (Boston, May 18–21, 1986), New York-Princeton (1986), pp. 635–653.Google Scholar
  29. 29.
    S. Abkowitz and David M. Rowel, “Significant cost savings for the manufacture of nearnet shape titanium alloy components by advanced powder metallurgy technology,” in: Titanium-1986: Proceedings of the Technical Program of the International Conference, Vol. 2, Dayton (1987), pp. 816–817.Google Scholar
  30. 30.
    Robert K. Fry, “The future of titanium powder metallurgy,” Light Met. Age,45, No. 3/4 13–14, 16 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • I. M. Fedorchenko
    • 1
  1. 1.Institute of Problems of Material ScienceAcademy of Sciences of the Ukrainian SSRUkrain

Personalised recommendations