Advertisement

Soviet Powder Metallurgy and Metal Ceramics

, Volume 29, Issue 2, pp 136–141 | Cite as

The strength of nickel alloys and their wear resistance under ultrasonic treatment

  • A. V. Paustovskii
  • V. A. Perevyazko
  • V. V. Ogorodnikov
  • V. P. Savchuk
Test Methods and Properties of Powdered Materials

Keywords

Nickel Wear Resistance Nickel Alloy Ultrasonic Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. D. Pernik, Problems of Cavitation [in Russian], Sudostroenie, Leningrad (1966).Google Scholar
  2. 2.
    L. I. Pogodaev, The wear resistance of materials and machine parts under hydroabrasive and cavitation wear,” Author's Abstract of Doctoral Thesis, Moscow (1979).Google Scholar
  3. 3.
    L. D. Rozenberg (ed.), The Physical Foundations of Ultrasonics [in Russian], Nauka, Moscow (1970).Google Scholar
  4. 4.
    M. S. Koval'chenko, A. V. Paustovskii, and V. A. Perevyazko, “Regularities of wear of sintered carbide concentrators in ultrasonic treatment of nitride ceramics,” Poroshk. Metall., No. 4, 83–88 (1985).Google Scholar
  5. 5.
    M. S. Koval'chenko, A. V. Paustovskii, and V. A. Perevyazko, “Effect of the properties of abrasive materials on the effectiveness of ultrasonic treatment of ceramics,” Poroshk. Metall., No. 7, 35–38 (1986).Google Scholar
  6. 6.
    M. V. Kharitonovich and G. I. Éskin, Ultrasound in Processes of Plastic Deformation of Metals and Alloys [in Russian], Vsesoyuznyi Institut Legkikh Splavov, Moscow (1970).Google Scholar
  7. 7.
    V. V. Klubovich and A. V. Stepanenko, Ultrasonic Treatment of Materials [in Russian], Nauka i Tekhnika, Minsk (1981).Google Scholar
  8. 8.
    L. B. Ehrlich, “The mechanism of fatigue failure in contact loading,” in: Fatigue Strength of Metals [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962), pp. 37–41.Google Scholar
  9. 9.
    B. I. Butakov, “Estimate of the accuracy of determining the depth of the strain-hardened layer in plastic surface deformation,” Vestn. Mashinostr., No. 11, 22–24 (1982).Google Scholar
  10. 10.
    M. Kh. Shorshorov, A. S. Tikhonov, S. I. Bulat, et al., Superplasticity of Metallic Materials [in Russian], Nauka, Moscow (1973).Google Scholar
  11. 11.
    G. V. Samsonov, G. G. Dzodziev, L. I. Klyachko, and V. K. Vitryanyuk, “The effect of molybdenum on the properties of cermet sintered carbides,” Poroshk. Metall., No. 4, 57–60 (1972).Google Scholar
  12. 12.
    M. L. Bershtein and V. A. Zaimovskii, The Mechanical Properties of Metals [in Russian], Metallurgiya, Moscow (1979).Google Scholar
  13. 13.
    K. I. Portnoi and B. N. Babich, Dispersion-Hardened Materials [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  14. 14.
    J. K. Tyen, “The devising of alloys hardened by disperse oxides and segregations,” in: Problems of Devising Structural Alloys [in Russian], Metallurgiya, Moscow (1980), pp. 204–228.Google Scholar
  15. 15.
    V. K. Grigorovich, Hardness and Microhardness of Metals [in Russian], Nauka, Moscow (1976).Google Scholar
  16. 16.
    V. I. Trefilov and V. F. Moiseev, Disperse Particles in High Melting Metals [in Russian], Naukova Dumka, Kiev (1978).Google Scholar
  17. 17.
    R. V. Guard, in: The Mechanism of Strengthening Solids [in Russian], Metallurgiya, Moscow (1965), pp. 220–224.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. V. Paustovskii
    • 1
  • V. A. Perevyazko
    • 1
  • V. V. Ogorodnikov
    • 1
  • V. P. Savchuk
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations