Basic Research in Cardiology

, Volume 92, Supplement 1, pp 75–86 | Cite as

Ca2+-dependent and Ca2+-independent regulation of contractility in isolated human myocardium

  • B. Pieske
  • K. Schlotthauer
  • J. Schattmann
  • F. Beyersdorf
  • J. Martin
  • H. Just
  • G. Hasenfuss


Changes in contractile force of the myocardium may depend on changes in the intracellular Ca2+ concentration, changes in the responsiveness of the myofibrils for Ca2+, or a combination of both. We investigated in isolated muscle strip preparations from human nonfailing and endstage failing hearts the influence of physical (changes in preload, stimulation rate, or rhythm), and pharmacological interventions (α-or β-adrenoceptor-stimulation, endothelin) on developed force of contraction and the corresponding intracellular Ca2+ transients.


Isometric contraction, electrical stimulation, 37°C. Simultaneous registration of force of contraction and intracellular Ca2+ transients (aequorin method).


Increases in preload, α-and endothelin-receptor stimulation resulted in increases in force of contraction without increasing aequorin light emission. Increasing stimulation rate or increasing rest intervals resulted in parallel increases (nonfailing myocardium) or decreases (failing myocardium) of force of contraction and aequorin light emission. β-Adrenoceptor-stimulation exerted inotropic and lusitropic effects in human failing myocardium associated with a large, overproportional increase in aequorin light emission.


The human heart regulates intrinsic contractility via several subcellular mechanisms. Increases in preload (Frank-Starling-mechanism) and α-or endothelin-receptor-stimulation enhance myocardial contractility by increasing the Ca2+ responsiveness of the myofilaments; rate- and rhythm-dependent modulation of the contractile state directly depend on changes in the intracellular Ca2+-transients; β-adrenoceptor stimulation results in an overproportional large increase in intracellular Ca2+ transients, preably due to additional cAMP-dependent Ca2+-desensitizing effects on the level of the myofibrils.

Key words

Human myocardium excitation-contraction coupling Frank-Starling mechanism endothelin aequorin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327: 79–94Google Scholar
  2. 2.
    Allen DG, Kentish JC (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407: 489–503Google Scholar
  3. 3.
    Blinks JR, Endoh M (1986) Modification of myofibrillar responsiveness to Ca2+ as an inotropic mechanism. Circulation 73 (Suppl III): 85–98Google Scholar
  4. 4.
    Blinks JR (1993) Analysis of the effects of drugs on myofibrillar Ca2+ sensitivity in intact cardiac muscle. In: Modulation of Cardiac Ca2+ Sensitivity. Lee JA and Allen DG, editors. Oxford University Press, Oxford, UK: 242–282Google Scholar
  5. 5.
    Böhm M, Gierschik P, Jakobs K, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of G in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82: 1249–1265Google Scholar
  6. 6.
    Böhm M, Diet F, Feiler G, Kemkes B, Erdmann E (1988) α-Adrenoceptors and α-adrenoceptor-mediated positive inotropic effects in failing human myocardium. J Cardiovasc Pharm 12: 357–364Google Scholar
  7. 7.
    Bristow MR, Ginsberg K, Minobe WA, Cubicciotti RS, Sageman WS, Lunic K, Billingham MR, Harrison DL, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic density in failing human hearts. N Engl J Med 307: 205–211Google Scholar
  8. 8.
    Bristow MR, hershberg RE, Port ID, Minobe WA, Rasmussen R (1988) β2-Adrenergic receptor-mediated adenylate cyclase stimulation in non-failing and failing ventricular myocardium. Mol Pharmacol 35: 295–303Google Scholar
  9. 9.
    Brodde OE (1994) Beta-adrenoceptors in cardiac disease. Pharmacol Ther 60: 405–430Google Scholar
  10. 10.
    Craelius W, Chen V, El-Sherif N (1988) Stretch-activated ion channels in ventricular myocytes. Biosci Rep 8: 407–414Google Scholar
  11. 11.
    Dies F, Krell MJ, Whitlow P et al. (1986) Intermittent dobutamine in ambulatory outpatients with chronic cardiac failure. Circulation 80: 74–83Google Scholar
  12. 12.
    Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and β-adrenoceptors. Circ Res 62: 247–265Google Scholar
  13. 13.
    Endoh M (1991) Signal transduction of myocardial alpha1-adrenoceptors: regulation of ion channels, intracellular calcium, and force of contraction — a review. J Appl Cardiol 6: 379–399Google Scholar
  14. 14.
    Endoh M, Morita H, Kimura J (1996) The role of phosphoinositide hydrolysis in the regulation of cardiac function via alpha-adrenergic, endothelin, and angiotensin receptors. In: Molecular and Cellular Mechanisms of Cardiovascular Regulation, Eds: Endoh M, Morad M, Scholz H, Ijima T. Springer Verlag Tokyo, Berlin, Heidelberg, New York: 327–351Google Scholar
  15. 15.
    Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256: 54–56Google Scholar
  16. 16.
    Fabiato A (1985) Simulated calcium current can both cause calcium loading and trigger calcium release from the sarcoplasmic reticulum of a skinned cardiac Purkinje fiber. J Gen Physiol 85: 291–320Google Scholar
  17. 17.
    Feldman MD, Gwathmey JK, Phillips P, Schoen F, Morgan JP (1988) Reversal of the force-frequency relationship in working myocardium from patients with end-stage heart failure. J Appl Cardiol 3: 273–283Google Scholar
  18. 18.
    Feldman MD, Alderman JR, Aroesty JM, Royal HD, Ferguson JJ, Owen RM, Grossman W, McKay RG (1988) Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with dilated cardiomyopathy. J Clin Invest 82: 1661–1669Google Scholar
  19. 19.
    Frank O (1895) Zur Dynamik des Herzmuskels. J Biol 32: 370–447. Translation from German: Chapman CP, Wasserman EB (1959) On the dynamics of cardiac muscle. Am Heart J 58: 282–317Google Scholar
  20. 20.
    Gulati J (1992) Length-sensing function of troponin C and Starling's law. Circulation 85: 1954–1955Google Scholar
  21. 21.
    Hasenfuss G, Holubarsch C, Hermann HP, Astheimer K, Pieske B, Just H (1994) Influence of the force-frequency relation on hemodynamics and left ventricular function in patients with nonfailing hearts and in patients with dilated cardiomyopathy. Eur Heart J 15: 164–170Google Scholar
  22. 22.
    Hasenfuss G, Reinecke R, Studer H, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca2+-ATPase in failing and nonfailing human myocardium. Circ Res 75: 434–442Google Scholar
  23. 23.
    Hasenfuss G, Mulieri LA, Leavitt BJ, Alpert NR (1994) Influence of isoproterenol on contractile function, excitation-contraction coupling, and energy turnover of isolated nonfailing human myocardium. J Mol Cell Cardiol 26: 1461–1469Google Scholar
  24. 24.
    Hofmann PA, Fuchs F (1988) Bound calcium and force development in skinned cardiac muscle bundles: Effect of sarcomere length. J Mol Cell Cardiol 20: 667–677Google Scholar
  25. 25.
    Holubarsch C, Ruf T, Goldstein D, Ashton RC, Nickl W, Pieske B, Pioch K, Lüdemann J, Wiesner S, Hasenfuss G, Posival H, Just H, Burkhoff D (1996) Existence of the Frank-Starling mechanism in the failing human heart. Investigations on the organ, tissue, and sarcomere level. Circulation 94: 683–689Google Scholar
  26. 26.
    Kentish JC, ter Keurs H, Ricciardi L, Bucx J, Noble MIM (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Circ Res 58: 755–768Google Scholar
  27. 27.
    Kihara Y, Morgan JP (1989) A comparative study of three methods for intracellular loading of the calcium indicator aequorin in ferret papillary muscles. Biochem Biophys Res Commun 162: 402–407Google Scholar
  28. 28.
    Kirber MT, Walsh JV, Singer JJ (1988) Stretch-activated ion channels in smooth muscle: A mechanism for the initiation of stretch-induced contraction. Pflugers Arch 412: 339–345Google Scholar
  29. 29.
    Komamura K, Shannon RP, Ihara T, Shen YT, Mirsky I, Bishop SP, Vatner SF (1993) Exhaustion of the Frank-Starling mechanism in conscious dogs with heart failure. Am J Physiol 265: H1119-H1131Google Scholar
  30. 30.
    Lakatta EG (1983) Determinants of cardiovascular performance: Modifications due to aging. J Chronic Dis 36: 15–30Google Scholar
  31. 31.
    Le Guennec JY, White E, Gannier F, Argibay JA, Garnier D (1991) Stretch-induced increase of intracellular calcium concentration in single guinea-pig ventricular myocytes. Exp Physiol 76: 975–978Google Scholar
  32. 32.
    Levin KR, Page E (1980) Quantitative studies on plasmalemmal folds and caveolae of rabbit ventricular myocardial cells. Circ Res 46: 244–255Google Scholar
  33. 33.
    Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G (1995) Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92: 778–784Google Scholar
  34. 34.
    Mulieri LA, Leavitt BJ, Hasenfuss G, Allen PD, Alpert NR (1989) Protection of human left ventricular myocardium from cutting injury with 2,3 butanedione monoxime. Circ Res 65: 1441–1444Google Scholar
  35. 35.
    Mulieri LA, Hasenfuss G, Ittleman F, Leavitt B, Allen PD, Blanchard EM, Alpert NR (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85: 1743–1750Google Scholar
  36. 36.
    Okazaki O, Suda N, Hongo K, Konishi M, Kurihara S (1990) Modulation of Ca2+ transients and contractile properties by β-adrenoceptor stimulation in ferret ventricular muscles. J Physiol (Lond) 423: 221–240Google Scholar
  37. 37.
    Packer M (1991) The PROMISE Study Research Group. Effects of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 325: 1468–1475Google Scholar
  38. 38.
    Pieske B, Hasenfuss G, Holubarsch C, Schwinger R, Böhm M, Just H (1992) Alteration of the force-frequency relationship in the failing human heart depends on underlying cardiac disease. Basic Res Cardiol 87 (I): 213–221Google Scholar
  39. 39.
    Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G (1955) Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92: 1169–1178Google Scholar
  40. 40.
    Pieske B, Sütterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy: functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98: 764–776Google Scholar
  41. 41.
    Pieske B, Beyermann B, Duis J, Clozel M, Breu V (1996) Endothelin-1 increases contractility in human dilated cardiomyopathy via an upregulated ETA receptor subtype. Circulation 94 (Suppl): I-406Google Scholar
  42. 42.
    Piot C, Lemaire S, Albat B, Seguin J, Nargeot J, Richard S (1996) High frequency-induced upregulation of human cardiac calcium currents. Circulation 93: 120–128Google Scholar
  43. 43.
    Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contractions of the heart. J Physiol 4: 29–42Google Scholar
  44. 44.
    Sakai S, Miyauchi T, Sakurai T, Kasuya Y, Ihara M, Yamaguchi I, Goto K, Sigisthita Y (1996) Endogenous Endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in Endothelin-1 production in the failing heart. Circulation 93: 1214–1222Google Scholar
  45. 45.
    Schwinger RHG, Böhm M, Koch A, Schmidt U, Morano I, Eissner HJ, Überfuhr R, Reichart B, Erdmann E (1994) The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 74: 959–969Google Scholar
  46. 46.
    Starling EH (1918) Linacre lecture on the law of the heart. London, England: LongmannsGoogle Scholar
  47. 47.
    Studer R, Reinecke H, Bilger J, Eschenhagen T, Böhm M, Hasenfuss G, Just H, Holtz J, Drexler H (1994) Gene expression of the Na+/Ca2+ exchanger in endstage human heart failure. Circ Res 75: 443–453Google Scholar
  48. 48.
    Sutko JL, Bers DM, Reeves JP (1986) Postrest inotropy in rabbit ventricle: Na+/Ca2+ exchange determines sarcoplasmic reticulum Ca2+ content. Am J Physiol 250: H654-H661Google Scholar
  49. 49.
    Uretsky BF (1990) The ENOXIMONE Multicenter Trial Group. Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure. Lack of benefit compared to placebo. Circulation 82: 774–780Google Scholar
  50. 50.
    Vago T, Bevilacqua M, Norbiato G, Baldi G, Chebat E, Bertora P, Baroidi G, Accinni R (1989) Identification of α1-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: Characteristics and linkage to GTP-binding proteins. Circ Res 64: 474–481Google Scholar
  51. 51.
    Wang J, Paik G, Morgan JP (1991) Endothelin-1 enhances myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium. Circ Res 69: 582–589Google Scholar
  52. 52.
    Wei C, Lerman A, Rodeheffer RJ, McGregor CGA, Brandt RR, Wright S, Heublein DM, Kao PC, Edwards WD, Burnett JC (1994) Endothelin in human congestive heart failure. Circulation 89: 1580–1586Google Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • B. Pieske
    • 1
  • K. Schlotthauer
    • 1
  • J. Schattmann
    • 1
  • F. Beyersdorf
    • 2
  • J. Martin
    • 2
  • H. Just
    • 1
  • G. Hasenfuss
    • 1
  1. 1.Medizinische Klinik III Abteilung Kardiologie und AngiologieUniversität FreiburgFreiburgGermany
  2. 2.Medizinische Klinik III Abteilung Herz-und GefäßchirurgieUniversität FreiburgFreiburgGermany

Personalised recommendations