Skip to main content
Log in

Molecular mechanisms regulating the myofilament response to Ca2+: Implications of mutations causal for familial hypertrophic cardiomyopathy

  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

In this chapter we consider a current perception of the molecular mechanisms controlling myofilament activation with emphasis on alterations that may occur in familial hypertrophic cardiomyopathy (FHC). FHC is a sarcomeric disease (100) with an autosomal dominant pattern of heritability (27, 51). There is a substantial body of evidence implicating missense mutations in the β-MHC gene as causal for the development of this disease. Recently, mutations in genes of two thin filament regulatory proteins, cardiac troponin T (cTnT) and α-tropomyosin (α-Tm), have also been linked to FHC. The commonality among the functional consequences of these mutations remains an important question. This review discusses how these pathological mutations may impact the activation process by disrupting critical structure function relations in both the thick and thin filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Mahdawi S, Chamberlain S, Cleland J, Nihoyannopoulos P, Gilligan D, French J, Choudhurv L, Williamson R, Oakley C (1993) Identification of a mutation in the β-cardiac myosin heavy chain gene in a family with hypertrophic cardiomyopathy. Br Heart J 69: 136–141

    Google Scholar 

  2. Anan R, Greve G, Thiefelder L, Watkins H, McKenna WJ, Solomon S, Vecchio C, Shonom H, Nakao S, Tanaka H, Mares A Jr, Towbin JA, Spirito P, Roberts R, Seidman JG, Seidman CE (1994) Prognostic implications of novel β-cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 93: 280–285

    Google Scholar 

  3. Breitbart RE, Nadal-Ginard B (1986) Complete nucleotide sequence of the fast skeletal troponin T gene. J Mol Biol 188: 313–324

    Google Scholar 

  4. Breitbart RE, Nguyen HT, Medford RM, Destree AT, Mahdavi V, Nadal-Ginard B (1985) Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene. Cell 41: 67–82

    Google Scholar 

  5. Brisson JR, Golosinska K, Smillie LB, Sykes BD (1986) Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry 25: 4548–4555

    Google Scholar 

  6. Burke AP, Farb A, Virmani R, Goodman J, Smialek JE (1991) Sports-related and non-sports-relared sudden cardiac death in young adults. Am Heart J 121: 568–575

    Google Scholar 

  7. Carrier L, Hengstenberg C, Beckmann JS, Guicheney P, Dufour C, Bercovici J, Dausse E, Berebbi-Betrand I, Wisnewsky C, Pulvenis D, Fetler L, Vignal A, Weissenbach J, Hillaire D, Feingold J, Bouhour JB, Hagege A, Desnos M, Isnard R, Dubourg O, Komajda M, Schwartz K (1993) Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genetics 4: 311–313

    Google Scholar 

  8. Caspar DLD, Cohen C, Longley W (1969) Tropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol 41: 87–107

    Google Scholar 

  9. Cho YJ, Liu J, Hitchcock-DeGregori SE (1990) The amino terminus of muscle tropomyosin is a major determinant for function. J Biol Chem 265: 538–545

    Google Scholar 

  10. Chong PCS, Hodges RS (1982) Photochemical cross-linking between rabbit skeletal troponin subunits. J Biol Chem 257: 11667–11672

    Google Scholar 

  11. Chong PCS, Hodges RS (1982) Photochemical cross-linking between rabbit skeletal troponin and α-tropomyosin. J Biol Chem 257: 9152–9160

    Google Scholar 

  12. Cohen C, Szent-Gyorgyi AG (1957) Optical rotation and helical polypeptide chain configuration in α-proteins. J Amer Chem Soc 79: 248

    Google Scholar 

  13. Cohen C, Caspar DLD, Parry DAD, Lucas RM (1971) Tropomyosin crystal dynamics. Cold Spring Harbor Symp Quant Biol 36: 205–216

    Google Scholar 

  14. Consevage MW, Salada GC, Baylen BG, Ladda RL, Rogan PK (1994) A new missense mutation, Arg 719 Gln, in the β-cardiac heavy chain myosin gene of patients with familial hypertrophic cardiomyopathy. Human Mol Genetics 3: 1025–1026

    Google Scholar 

  15. Cotran RS, Kumar V, Robbins SL (eds) (1989) The Heart. In. Pathologic Basis of Disease 4th edition. WB Saunders Company, Philadelphia, pp 642–656

    Google Scholar 

  16. Cuda G, Fanananpazir L, Zhu W, Sellers JR, Epstein ND (1993) Skeletal muscle expression and abnormal function of β-myosin in hypertrophic cardiomyopathy. J Clin Invest 91: 2861–2865

    Google Scholar 

  17. Durand JB, Anchee AB, Roberts R (1995) Molecular and clinical aspects of inherited cardiomyopathies. Annals of Medicine 27: 311–317

    Google Scholar 

  18. Epstein ND, Cohn GM, Cyrate L, Fananapazir L (1992) Differences in clinical expression of hypertrophic car diomyopathy associated with two distinct mutations in the β-myosin heavy chain gene a 908Leu-Val mutation and a 403Arg-Gln mutation. Circulation 86: 345–352

    Google Scholar 

  19. Epstein ND, Fananapazir L, Lin HJ, Mulvihill J, White R, Lalouel JM, Lifton RP, Nienhuis AW, Leppert M (1992) Evidence of genetic heterogeneity in five kindreds with familial hypertrophic cardiomyopathy. Circulation 85: 635–647

    Google Scholar 

  20. Fananapazir L, Epstein ND (1995) Prevalence of hypertrophic cardiomyopathy and limitations of screening methods. Circulation 92: 700–704

    Google Scholar 

  21. Fananapazir L, Dalakas MC, Cyran F, Cohn G, Epstein ND (1993) Missense mutations in the β-myosin heavy-chain gene cause central core dise hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 90: 3993–3997

    Google Scholar 

  22. Fananapazir L, Epstein ND (1994) Genotype-phenotype correlations in hypertrophic cardiomyopathy. Circulation 89: 22–32

    Google Scholar 

  23. Farah CS, Reinach FC (1995) The troponin complex and regulation of muscle contraction. Faseb J 9: 755–767

    Google Scholar 

  24. Flicker PF, Phillips GN JR, Cohen C (1982) Troponin and its interactions with tropomyosin. J Mol Biol 162: 495–501

    Google Scholar 

  25. Fryberg E, Fryberg CC, Beall C, Saville DL (1990) Drosophila melanogaster troponin-T mutations engender three distincct syndromes of myofibrillar abnormalities. J Mol Bio 216: 657–675

    Google Scholar 

  26. Geisterfer-Lowrance AAT, Kass S, Tanigawa G, Vosberg H, McKenna W, Seidman CE, Seidman JG (1990) A molecular basis for familial hypertrophic cardiomyopathy: a β-myosin heavy chain gene missence mutation. Cell 62: 999–1006

    Google Scholar 

  27. Greaves SC, Roche AHG, Meutze JM, Whitlock RML, Veale AMO (1987) Inheritance of hypertrophic cardiomyopathy: a cross sectional and M mode echocardiographic study of 50 families. Br Heart J 58: 259–66

    Google Scholar 

  28. Gusev NB, Barskaya NV, Verin AD, Duzhenkova IV, Khuchua ZA, Zheltova AO (1983) Some properties of cardiac troponin T structure. Biophys J 213: 123–129

    Google Scholar 

  29. Heeley DH, Smillie LB (1988) Interaction of rabbit skeletal muscle troponin T and F-actin at physiological ionic strength. Biochemistry 27: 8227–8232

    Google Scholar 

  30. Heeley DH, Golosinska K, Smillie LB (1987) The effects of troponin T fragments T1 and T2 on the binding of nonpolymerizable tropomyosin to F-actin in the presence and absence of troponin I and troponin C. J Biol Chem 262: 9971–9978

    Google Scholar 

  31. Heeley DH, Smillie LB, Lohmeirer-Vogel EM (1989) Effects of deletion of tropomyosin overlap on regulated actomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem J 258: 831–836

    Google Scholar 

  32. Hejtmancik JF, Brink PA, Towbin J, Hill R, Brink L, Tapscott T, Trakhtenbroit A, Robert R (1991) Localization of gene for familial hypertrophic cardiomyopathy to chromosome 14q1 in a diverse US population. Circulation 83: 1592–1597

    Google Scholar 

  33. Hitchcock SE (1975) Regulation of muscle contraction: binding of troponin and its components to actin and tropomyosin. Eur J Biochem 52: 255–263

    Google Scholar 

  34. Hitchcock SE, Zimmerman CJ (1981) Study of the structure of troponin T by measuring the relative reactivities of lysines with acetic anhydride 147: 125–151

  35. Hodges RS, Sodek J, Smillie LB, Jurasek L (1972) Tropomyosin: amino acid sequence and coiled-coil structure Cold Spring Harbor Symp Quant Biol 37: 299–310

    Google Scholar 

  36. Iio T (1985) Conformational changes of troponin T induced by calcium binding to troponin C. J Biochem 98: 261–263

    Google Scholar 

  37. Ishii Y, Lehrer SS (1991) Two-site attachment of troponin to pyrenelabelled tropomyosin. J Biol Chem 266: 6894–6903

    Google Scholar 

  38. Jarcho JA, McKenna W, Pare P, Solomon SD, Holcombe RF, Dickie S, Levi T, Donis-Keller H, Seidman JG, Seidman CE (1989) Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 321: 1372–1378

    Google Scholar 

  39. Jin JP, Lin JJC (1989) Isolation and characterization of cDNA clones encoding embryonic and adult isoforms of rat cardiac troponin T. J Biol Chem 264: 14471–14477

    Google Scholar 

  40. Leger J, Bouveret P, Schwartz K, Swynghedauw B (1976) A comparative study of skeletal and cardiac tropomyosins. Pflugers Archiv 362: 271–277

    Google Scholar 

  41. Lehman W, Craig R, Vilbert P (1994) Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three dimensional reconstruction. Nature 368: 65–67

    Google Scholar 

  42. Lehrer SS (1994) The regulatory switch of the muscle thin filament: Ca2+ or myosin heads? J Muscle Res and Cell Mot 15: 232–236

    Google Scholar 

  43. Lowey S, Slayter HS, Weeds AG, Baker H (1969) Substructure of the myosin molecule. J Mol Biol 42: 1–29

    Google Scholar 

  44. Mak AS, Smillie LB (1981) Nonpolymerizable tropomyosin: preparation some properties and F-actin binding. 101: 208–214

  45. Mak AS, Smillie LB (1981) Structural interpretation of the two site binding of troponin on the muscle thin filament. J Mol Bio 149: 541–550

    Google Scholar 

  46. Mak AS, Smillie LB, Stewart GR (1980) A comparison of the amino acid of rabbit skeletal muscle α- and β-tropomyosins. J Biol Chem 255: 3647–3651

    Google Scholar 

  47. Marian AJ, Yu QT, Mann DL, Graham FL, Roberts R (1995) Expression of a mutation causing hypertrophic cardiomyopathy disrupts sarcomere assembly in adult feline myocytes. 77: 98–106

  48. Marian AJ, Yu QT, Mares A, Hill R, Roberts R, Perryman MB (1992) Detection of a new mutation in the β-myosin heavy chain gene in an individual with hypertrophic cardiomyopathy. J Clin Invest 90: 2156–2165

    Google Scholar 

  49. Marion AJ, Robert R (1995) Recent advances in molecular genetics of hypertrophic cardiomyopathy. Circulation 92: 1336–1347

    Google Scholar 

  50. Maron BJ, Epstein SE, Roberts WC (1985) Causes of sudden death in competitive athletes. J Am Coll Cardiol 7: 204–214

    Google Scholar 

  51. Maron BJ, Nichols PF III, Pickle LW, Wesley YE, Mulvihill JJ (1984) Patterns of inheritance in hypertrophic cardiomyopathy assessment by M mode and two dimensional echocal diography. Am J Cardiol 53: 1087–1094

    Google Scholar 

  52. McKenna WJ, Camm AJ (1989) Sudden death in hypertrophic cardiomyopathy. Circulation 80: 1489–1492

    Google Scholar 

  53. McLachalan AD, Stewart M, Smillie LB (1975) Sequence repeats in α-tropomyosin. J Mol Biol 98: 281–291

    Google Scholar 

  54. McLachalan AD, Stewart M (1975) Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J Mol Biol 98: 293–304

    Google Scholar 

  55. Medford RM, Nguyen HT, Destree AT, Summers E, Nadal-Ginard B (1984) A novel mechanism of alternative RNA splicing for the developmentally regulated generation of troponin T isoforms from a single gene. Cell 38: 409–421

    Google Scholar 

  56. Millar NC, Homsher E (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. J Biol Chem 265: 20234–20240

    Google Scholar 

  57. Morris EP, Lehrer SS (1984) Troponin-tropomyosin interactions. Flourescence studies of the binding of troponin, troponin T, and chymotryptic troponin T fragments to specifically labeled tropomyosin. Biochemistry 23: 2214–2220

    Google Scholar 

  58. Moss RL (1992) Ca2+ regulation of mechanical properties of striated muscle. Cir Res 70: 865–884

    Google Scholar 

  59. Muthuchamy M, Grupp I, Grupp G, O'Toole BA, Kier AB, Boivin GP, Neumann J, Wieczorek DF (1995) Molecular and physiological effects of overexpressing striated muscle β-tropomyosin in the adult murine heart J Biol Chem: in Press

  60. Nakajima-Taniguchi C, Matsue H, Nagata S, Kishmoto T, Yamauchi-Takihara K (1995) Novel missence mutation in α-tropomyosin gene found in japanese patients with hypertrophic cardiomyopathy. J Mol Cell Cardiol 27: 2053–2058

    Google Scholar 

  61. Nishi H, Kimura A, Harada H, Toshima H, Sasazuki T (1992) Novel missence mutation in cardiac β-myosin heavy chain gene found in a japanese patient with hypertrophic cardiomyopathy. Biochem Biophys Res Comm 188: 379–387

    Google Scholar 

  62. Ohtsuki I (1979) Molecular arrangement of troponin T in the thin filament. J Biochem 86: 491–497

    Google Scholar 

  63. Palmiter KA, Kitada Y, Muthuchamy M, Wieczorek DF, Solaro RJ (1996) Exchange of β- for α-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem 271: 11611–11614

    Google Scholar 

  64. Pan B, Potter JD (1992) Two genetically expressed troponin T fragments representing α and β isoforms exhibit functional differences. J Biol Chem 267: 23052–23056

    Google Scholar 

  65. Pan B, Gordon AM, Potter JD (1991) Deletion of the first 45 NH2-terminal residures of rabbit skeletal troponin T strengthens binding of troponin to immobilized tropomyosin. J Biol Chem 266: 12432–12438

    Google Scholar 

  66. Pan BS, Gordon AM, Luo Z (1989) Removal of tropomyosin overlap modifies cooperative binding of myosin S1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem 264: 8495–8498

    Google Scholar 

  67. Parry DAD (1981) Analysis of the amino acid sequence of α-tropomyosin-binding fragment from troponin T. J Mol Biol 146: 259–263

    Google Scholar 

  68. Parry DAD (1975) Analysis of the primary sequence of α-tropomyosin from rabbit skeletal muscle. J Mol Biol 98: 519–535

    Google Scholar 

  69. Parry DAD (1976) Movement of tropomyosin during regulation of vertebrate skeletal muscle: a simple physical model. Biochem Biophys Res Com 68: 323–328

    Google Scholar 

  70. Pato MD, Mak AS, Smillie LB (1981) Fragments of rabbit striated muscle α-tropomyosin. J Biol Chem 256: 602–607

    Google Scholar 

  71. Pato MD, Mak AS, Smillie LB (1981) Fragments of rabbit striated muscle α-tropomyosin. J Biol Chem 256: 593–598

    Google Scholar 

  72. Pearlstone JR, Smillie LB (1982) Binding of troponin-T fragments to several types of tropomyosin. J Biol Chem 257: 10587–10592

    Google Scholar 

  73. Pearlstone JR, Smillie LB (1983) Effects of troponin-I plus-C on the binding of troponin-T and its fragments to α-tropomyosin. J Biol Chem 258: 2534–2542

    Google Scholar 

  74. Pearlstone JR, Smillie LB (1981) Identification of a second binding region on rabbit skeletal troponin-T for α-tropomyosin. FEBS Letters 128: 119–122

    Google Scholar 

  75. Pearlstone JR, Smillie LB (1977) The binding site of rabbit skeletal α-tropomyosin on troponin T. Can J Biochem 55: 1032–1038

    Google Scholar 

  76. Pearlstone JR, Smillie LB (1985) The binding sites of rabbit skeletal troponin-I on troponin-T. Can J Biochem 58: 649–654

    Google Scholar 

  77. Pearlstone JR, Smillie LB (1985) The interaction of rabbit skeletal muscle troponin T fragments with troponin I. Can J Biochem Cell Biol 63: 212–218

    Google Scholar 

  78. Pearlstone JR, Smillie LB (1978) Troponin T fragments: physical properties and binding to troponin C. Can J Biochem Cell Biol 56: 521–527

    Google Scholar 

  79. Pearlstone JR, Carpenter MR, Smillie LB (1977) Primary structure of rabbit skeletal muscle troponin-T. J Biol Chem 252: 971–977

    Google Scholar 

  80. Pearlstone JR, Carpenter MR, Johnson P, Smillie LB (1976) Aminoacid sequence of tropomyosin-binding component of rabbit skeletal muscle troponin. Proc Nat Acad Sci USA 73: 1902–1906

    Google Scholar 

  81. Phillips GN Jr, Fillers JP, Cohen C (1986) Tropomyosin crystal structure and muscle regulation. J Mol Biol 192: 111–131

    Google Scholar 

  82. Phillips GN Jr, Fillers JP, Cohen C (1980) Motions of tropomyosin. Biophys J 32: 485–502

    Google Scholar 

  83. Potekhin SA, Privalov PL (1982) Cooperative blocks in tropomyosin. J Mol Biol 159: 519–535

    Google Scholar 

  84. Potter JD, Gergely J (1974) Troponin, tropomyosin, and actin interaction in the Ca2+ regulation of muscle contraction. Biochemistry 13: 2697–2703

    Google Scholar 

  85. Potter JD, Sheng Z, Pan B, Zhao J (1995) A direct regulatory role for troponin T and a dual role for troponin C in the Ca2+ regulation of muscle contraction. J Biol Chem 270: 2557–2562

    Google Scholar 

  86. Privalov PL (1982) Double-stranded coiled coils: tropomyosin, paramyosin, and the myosin rod. Advan Protein Chem 35: 31–55

    Google Scholar 

  87. Rayment I, Holden HM, Whitaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA (1993) Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65

    Google Scholar 

  88. Risnik VV, Verin AD, Gusev NB (1985) Comparison of the structure of two cardiac troponin T isoforms. Biochem J 225: 549–552

    Google Scholar 

  89. Sodek J, Hodges RS, Smillie LB, Jurasek L (1972) Amino-acid sequence of rabbit skeletal tropomyosin and its coiled-coil structure. Proc Nat Acad Sci USA 69: 3800–3804

    Google Scholar 

  90. Solaro RJ, VanEyk JI (1996) Altered interactions among thin filament protein modulate cardiac function. J Mol Cell Cardio 28: 217–230

    Google Scholar 

  91. Solomon SD, Jarcho JA, McKenna W, Geisterfer-Lowrance A, Germain R, Salerni R, Seidman JG, Seidman CE (1990) Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease. J Clin Invest 86: 998–999

    Google Scholar 

  92. Straceski AJ, Geisterfer-Lowrance A, Seidman CE, Seidman JG, Leinwand LA (1994) Functional analysis of myosin missense mutations in familial hypertrophic cardiomyopathy. Proc Nat Acad Sci 91: 589–593

    Google Scholar 

  93. Sweeney HL, Straceski AJ, Leinwand LA, Tikunov BA, Faust L (1994) Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction. J Biol Chem 269: 1603–1605

    Google Scholar 

  94. Swynghedauw B (1986) Developmental and functional adaptation or contractile proteins in cardiac and skeletal muscles. Physiol Reviews 66: 710–771

    Google Scholar 

  95. Tanigawa G, Jarcho JA, Kass S, Solomon SD, Vosberg H, Seidman JG, Seidman CE (1990) A molecular basis for familial hypertrophic cardio-myopathy: an α/β-cardiac myosin heavy chain hybrid gene. Cell 62: 991–998

    Google Scholar 

  96. Tanokura M, Ohtsuki I (1982) Location of troponin I-binding on troponin T sequence. FEBS Letters 145: 147–149

    Google Scholar 

  97. Tanokura M, Tawada Y, Onoyama Y, Nakamura S, Ohtsuki I (1981) Primary structure of chymotryptic subfragments from rabbit skeletal troponin T. J Biochem 90: 263–265

    Google Scholar 

  98. Tao T, Gong BJ, Leavis PC (1990) Calcium-induced movement of troponin I relative to actin in skeletal muscle thin filaments. Science 2: 1339–1341

    Google Scholar 

  99. Theirfelder L, MacRae C, Watkins H, Tomfohrde J, Williams M, McKenna W, Bohm K, Noeske G, Schlepper M, Bowcock A, Vosberg H, Seidman JG, Seidman CE (1993) A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci 90: 6270–6274

    Google Scholar 

  100. Thierfelder L, Watkins H, MacRae C, Lamas R, McKenna W, Vosberg H, Seidman JG, Seidman CE (1994) α-Tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy; a disease of the sarcomere. Cell 77: 701–712

    Google Scholar 

  101. Tobacman LS (1988) Structure-function studies of the amino-terminal region of bovine cardiac troponin T. J Biol Chem 263: 2668–2672

    Google Scholar 

  102. Tobacman IS, Lee R (1987) Isolation and functional comparison of bovine cardiac troponin T isoforms. J Biol Chem 262: 4059–4064

    Google Scholar 

  103. Townsend PJ, Barton PJR, Yacoub MH, Farza H (1995) Molecular cloning of human cardiac troponin T isoforms: expression in developing and failing heart. J Mol Cell Cardiol 27: 2223–2236

    Google Scholar 

  104. Ueno H (1984) Local structural changes in tropomyosin detected by a trypsin-probe method. Biochemistry 23: 4791–4798

    Google Scholar 

  105. Watkins H, MacRae C, Thierfelder L, Chou YH, Frenneaux M, McKenna W, Seidman JG, Seidman CE (1993) A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nature Genetics 3: 333–337

    Google Scholar 

  106. Watkins H, McKenna WJ, Theirfelder L, Suk HJ, Anan R, O'Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, Seidman CE (1995) Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Eng J Med 332: 1058–1064

    Google Scholar 

  107. Watkins H, Rosenzweig A, Hwang D, Levi T, McKenna W, Seidman CE, Seidman JG (1992) Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med 326: 1108–14

    Google Scholar 

  108. Watkins H, Theirfelder L, Anan R, Jarcho J, Matsumori A, McKenna W, Seidman JG, Seidman CE (1993) Independent origin of identical β cardiac myosin heavy-chain mutations in hypertrophic cardiomyopathy Am J Hum Genet 53: 1180–1185

    Google Scholar 

  109. White SP, Cohen C, Phillips GN Jr (1987) Structure of co-crystals of tropomyosin and troponin. Nature 325: 826–828

    Google Scholar 

  110. Wieczorek DF, Muthuchamy M in production

  111. Willadsen KA, Butters CA, Hill LE, Tobacman LS (1992) Effects of the amino-terminal regions of tropomyosin and troponin T on thin filament assembly. J Biol Chem 267: 23746–23752

    Google Scholar 

  112. Zhang R, Zhao J, Mandveno A, Potter JD (1995) Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Cir Res 76: 1028–1035

    Google Scholar 

  113. Zot AS, Potter JD (1987) Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann Rev Biophys Chem 16: 535–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmiter, K.A., Solaro, R.J. Molecular mechanisms regulating the myofilament response to Ca2+: Implications of mutations causal for familial hypertrophic cardiomyopathy. Basic Res Cardiol 92 (Suppl 1), 63–74 (1997). https://doi.org/10.1007/BF00794070

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00794070

Key words

Navigation