Skip to main content
Log in

Sodium-calcium exchange: Recent advances

  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Na-Ca exchange proteins are involved in Ca homeostasis in a wide variety of tissues. Unique Na−Ca exchangers have been identified by molecular biological approaches and it appears that these may represent a superfamily of ion transporters, similar to that identified for ion channels. Major advances in our understanding of these transporters have occurred in the past decade by combining molecular approaches with electrophysiological analyses. The regulatory and transport properties of Na−Ca exchangers are beginning to become understood in molecular detail. It also appears that the physiological roles of Na−Ca exchange may be quite complex. This brief review highlights some recent advances in Na−Ca exchange research obtained through the combination of molecular biological and electrophysiological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artman M (1992) Sarcolemmal Na+−Ca2+ exchange activity and exchanger immunoreactivity in developing rabbit hearts. Amer J Physiol 263: H1506-H1513

    Google Scholar 

  2. Balasubramanyam M, Rohowsky-Kochan C, Reeves JP, Gardner JP (1994) Na+/Ca+ exchange-mediated calcium entry in human lymphocytes. J Clin Invest 94: 2002–2008

    Google Scholar 

  3. Barry WH, Bridge JHB (1993) Intracellular calcium homeostasis in cardiac myocytes. Circulation 87: 1806–1815

    Google Scholar 

  4. Bassani JWM, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476: 279–293

    Google Scholar 

  5. Bers DM (1991) Excitation-Contraction Coupling and Cardiac Contractile Force. Kluwer Academic Publications, Dordrecht Boston London

    Google Scholar 

  6. Bland KS, Takahashi K, Islam S, Michaelis ML (1996) Effects of NCX-1 antisense oligodeoxynucleotides on cardiac myocytes and primary neurons in culture. In: Hilgemann DW, Philipson KD, Vassort G (eds) Sodium-Calcium Exchange: Proceedings of the Third International Conference. New York Academy of Sciences, New York

    Google Scholar 

  7. Blaustein MP (1988) Sodium/calcium exchange and the control of contractility in cardiac muscle and vascular smooth muscle. J Cardiovasc Pharmacol 12: S56-S68

    Google Scholar 

  8. Blaustein MP (1989) Sodium-calcium exchange in cardiac, smooth, and skeletal muscles: key to control of contractility. In: Hoffman JF, Glebisch G (Eds) Current Topics in Membranes and Transport. Academic Press, Inc, San Diego, V34: 289–330

    Google Scholar 

  9. Blautein MP, DiPolo R, Reeves JP, Eds (1991) Sodium-Calcium Exchange: Proceedings of the Second International Conference. New York Academy of Sciences, New York

    Google Scholar 

  10. Boerth SR, Zimmer DB, Artman M (1994) Steady-state mRNA levels of the sarcolemmal Na+-Ca2+ exchanger peak near birth in the developing rabbit and rat hearts. Circ Res 74: 354–359

    Google Scholar 

  11. Bouchard RA, Clarke RB, Giles WR (1993) Regulation of unloaded cell shortening by sarcolemmal sodium-calcium exchange in isolated rat ventricular myocytes. J Physiol 469: 583–599

    Google Scholar 

  12. Bridge JHB, Spitzer KW, Ershler PR (1988) Relaxation of isolated ventricular cardiomyocytes by a voltage-dependent process. Science 241: 823–825

    Google Scholar 

  13. Bridge JHB, Smolley JR, Spitzer KW (1990) The relationship between charge movements associated with ICa and INa−Ca in cardiac myocytes. Science 248: 376–378

    Google Scholar 

  14. Buchko J, Hnatowich M, Hryshko LV (1996) The same regulatory Ca2+ binding site is employed by NCX1 and Calx for opposite Ca 2+i regulation phenotypes. Biophys J (submitted)

  15. Cannell MB (1991) Contribution of sodium-calcium exchange to calcium regulation in cardiac muscle. Ann N Y Acad Sci 639: 428–443

    Google Scholar 

  16. Chen F, Mottino G, Klitzner TS, Philipson KD, Frank JS (1995) Distribution of the Na+/Ca2+ exchange protein in developing rabbit myocytes. Am J Physiol 268: C1126-C1132

    Google Scholar 

  17. Condrescu M, Gardner JP, Chernaya G, Aceto JF, Kroupis C, Reeves JP (1995) ATP-dependent regulation of sodiumcalcium exchange in chinese hamster ovary cell transfected with the bovine cardiac sodium-calcium exchanger. J Biol Chem 270: 9137–9146

    Google Scholar 

  18. DiPolo R, Beauge L (1987) In squid axons, ATP modulates Na+-Ca2+ exchange by a Ca 2+i -dependent phosphorylation. Biochim Biophys Acta 897: 347–354

    Google Scholar 

  19. Doering AE, Lederer WJ (1993) The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea-pig heart cells. J Physiol 466: 481–499

    Google Scholar 

  20. Dominguez JH, Mann C, Rothrock JK, Bhati V (1991) Na+−Ca2+ exchange and Ca2+ depletion in rat proximal tubules. Amer J Physiol 261: F328-F335

    Google Scholar 

  21. Durkin JT, Ahrens DC, Pan YCE, Reeves JP (1991) Purification and amino-terminal sequence of the bovine cardiac sodium-calcium exchanger. Arch Biochim Biophys 290: 369–375

    Google Scholar 

  22. Fan J, Shuba Y, Morad M (1995) Modulation of sodium-calcium exchanger by beta-adrenergic agonists in frog ventricular myocytes. Biophys J 68: 136a

    Google Scholar 

  23. Frank JS, Mottino G, Reid D, Molday RS, Philipson KD (1992) Distribution of the Na+−Ca2+ exchange protein in mammalian cardiac myocytes: an immunoflourescence and immunocolloidal goldlabeling study. J Cell Biol 117: 337–345

    Google Scholar 

  24. Furman I, Cook O, Kasir J, Rahamimoff H (1993) Cloning of two isoforms of the rat brain Na+−Ca2+ exchanger gene and their functional expression in HeLa cells. Fed Eur Biochem Soc 219: 105–109

    Google Scholar 

  25. Furman I, Cook O, Kasir J, Low W, Rahamimoff (1995) The putative aminoterminal signal peptide of the cloned rat brain Na+−Ca2+ exchanger gene (Rbe-1) is not mandatory for functional expression. J Biol Chem 270: 19120–19127

    Google Scholar 

  26. Ganitkevich VY, Isenberg G (1993) Ca2+ entry through Na+−Ca2+ exchange can trigger Ca2+ release from Ca2+ stores in Na+-loaded guinea-pig coronary myocytes. J Physiol 468: 225–243

    Google Scholar 

  27. Gleason E, Borges S, Wilson M (1994) Control of transmitter release from retinal amacrine cells by Ca2+ influx and efflux. Neuron 13: 1109–1117

    Google Scholar 

  28. Hanson GL, Schilling WP, Michael LH (1993) Sodium-potassium pump and sodium-calcium exchange in adult and neonatal canine cardiac sarcolemma. Amer J Physiol 264: H320-H326

    Google Scholar 

  29. Haworth RA, Goknur AB (1992) ATP dependence of calcium uptake by the Na−Ca exchanger of adult heart cells. Circ Res 71: 210–217

    Google Scholar 

  30. Herchuelz A, Lebrun P (1993) A role for Na/Ca exchange in the pancreatic B cell: studies with thapsigargin and caffeine. Biochem Pharmacol 45: 7–11

    Google Scholar 

  31. Hilgemann DW (1990) Regulation and deregulation of cardiac Na+−Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344: 242–245

    Google Scholar 

  32. Hilgemann DW, Collins A (1992) Mechanism of cardiac Na+−Ca2+ exchange current stimulation by MgATP: possible involvement of amiophospholipid translocase. J Physiol 454: 59–82

    Google Scholar 

  33. Hilgemann DW, Matsuoka S, Nagel GA, Collins A (1992) Steady-state and dynamic properties of cardiac sodiumcalcium exchange: sodium-dependent inactivation. J Gen Physiol 100: 905–932

    Google Scholar 

  34. Hilgemann DW, Collins A, Matsuoka S (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange: secondary modulation by cytoplasmic calcium and ATP. J Gen Physiol 100: 933–961

    Google Scholar 

  35. Hryshko LV, Nicoll DA, Weiss JN, Philipson KD (1993) Biosynthesis and initial processing of the cardiac sarcolemmal Na+−Ca2+ exchanger. Biochim Biophys Acta 1151: 35–42

    Google Scholar 

  36. Hryshko LV, Nicoll DA, Matsuoka S, Weiss JN, Schwarz E, Benzer S, Philipson KD (1995) Anomolous regulation of the Na+−Ca2+ exchanger from Diosophila. Biophys J 68: 410a

    Google Scholar 

  37. Iwamoto T, Wakabayashi S, Shigekawa M (1995) Growth factor-induced phosphorylation and activation of aortic smooth muscle Na+/Ca2+ exchanger. J Biol Chem 270: 8996–9001

    Google Scholar 

  38. Kaplan JH, Kennedy BG, Somlyo AP (1987) Calcium-stimulated sodium efflux from rabbit vascular smooth muscle. J Physiol 388: 245–260

    Google Scholar 

  39. Kofuji P, Hadley RW, Kieval RS, Lederer WJ, Schulze DH (1992) Expression of the Na−Ca exchanger in diverse tissues: a study using the cloned human cardiac Na−Ca exchanger. Am J Physiol 263: C1241-C1249

    Google Scholar 

  40. Kofuji P, Lederer WJ, Shulze DH (1994) Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem 269: 5145–5149

    Google Scholar 

  41. Kohmoto O, Levi AJ, Bridge JHB (1994) Relation between reverse sodium-calcium exchange and sarcoplasmic reticulum calcium release in guinea pig ventricular cells. Circ Res 74: 550–554

    Google Scholar 

  42. Leblane N, Hume JR (1990) Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248: 372–376

    Google Scholar 

  43. Lee SL, Yu ASL, Lytton J (1994) Tissuespecific expression of Na+−Ca2+ exchanger isoforms. J Bio Chem 269: 14849–14852

    Google Scholar 

  44. Levesque PC, Leblane N, Hume IR (1994) Release of calcium from guinea pig cardiac sarcoplasmic reticulam induced by sodium-calcium exchange. Cardiovasec Res 28: 370–378

    Google Scholar 

  45. Levi AJ, Brooksby P, Hancox JC (1993) One hump or two? The triggering of calcium release from the sarcoplasmic reticulum and the voltage dependence of contraction in mammalian cardiac muscle. Cardiovasc Res 27: 1743–1757

    Google Scholar 

  46. Levi AJ, Brooksby P, Hancox JC (1993) A role for depolarisation induced calcium entry on the Na−Ca exchange in triggering intracellular calcium release and contraction in rat ventricular myocytes. Cardiovasc Res 27: 1677–1690

    Google Scholar 

  47. Levi AJ, Spitzer KW, Kohmoto O, Bridge JHB (1994) Depolarization-induced Ca entry via Na−Ca exchange triggers SR release in guinea pig cardiac myocytes. Amer J Physiol 266: H1422-H1433

    Google Scholar 

  48. Levitsky DO, Nicoll DA, Philipson KD (1994) Identification of the high affinity Ca2+-binding domain of the cardiac Na+−Ca2+ exchanger. J Biol Chem 269: 22847–22852

    Google Scholar 

  49. Li Z, Smolley CD, Bridge JHB, Frank JS, Philipson KD (1992) Expression of the cardiac Na+−Ca2+ exchanger in insect cells using a baculovirus vector. J Biol Chem 267: 7828–7833

    Google Scholar 

  50. Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, Philipson KD (1994) Cloning of the NCX2 isoform of the plasma membrane Na+−Ca2+ exchanger. J Biol Chem 269: 17434–17439

    Google Scholar 

  51. Li Z, Wu RY, Nicoll DA, Philipson KD (1994) Expression of the canine Na/Ca exchanger in transgenic mouse hearts. Biophys J 66: A331

    Google Scholar 

  52. Lipp P, Pott L (1988) Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. J Physiol 397: 601–630

    Google Scholar 

  53. Lipp P, Schwaller B, Niggli E (1995) Specific inhibition of Na−Ca exchange function by antinsense oligodeoxynucleotides. FEBS Lett 364: 198–202

    Google Scholar 

  54. Litwin SE, Webster GS, Bridge JHB (1995) Further evidence that reverse Na−Ca exchange can trigger SR calcium release. Biophys J 68: 135a

    Google Scholar 

  55. Litwin SE, Bridge JHB (1996) Evidence that reverse Na−Ca exchange can trigger SR Ca release. In: Hilgemann DW, Philipson KD, Vassort G (eds) Sodium-Calcium Exchange: Proceedings of the Third International Conference. New York Academy of Sciences, New York

    Google Scholar 

  56. Loo TW, Ho C, Clarke DM (1995) Expression of a functionally active human renal sodium-calcium exchanger lacking a signal sequence. J Biol Chem 270: 19345–19350

    Google Scholar 

  57. Low W, Kasir J, Rahaminoff H (1993) Cloning of the rat heart Na+−Ca2+ exchanger and its functional expression in HeLa cells. FEBS 316: 63–67

    Google Scholar 

  58. Matsuoka S, Hilgemann DW (1992) Steady-state and dynamic properties of cardiac sodium-calcium exchange: ion and voltage dependencies of the transport cycle. J Gen Physiol 100: 963–1001

    Google Scholar 

  59. Matsuoka S, Nicoll DA, Reilly RF, Hilgemann DW, Philipson KD (1993) Initial localization of regulatory regions of the cardiac sarcolemmal Na+−Ca2+ exchanger. Proc Natl Acad Sci 90: 3870–3874

    Google Scholar 

  60. Matsuoka S, Hilgemann DW (1994) Inactivation of outward Na+−Ca2+ exchange curent in guinea-pig ventricular myocytes. J Physiol 476: 443–458

    Google Scholar 

  61. Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD (1995) Regulation of the cardiac Na+−Ca2+ exchanger by Ca2+: mutational analysis of the Ca2+-binding domain. J Gen Physiol 105: 403–420

    Google Scholar 

  62. Milanick MA (1989) Na−Ca exchange in ferret red blood cells. Amer J Physiol 256: C390-C398

    Google Scholar 

  63. Miura Y, Kimura J (1989) Sodium-calcium exchange current: dependence on internal Ca and Na and competitive binding of external Na and Ca. J Gen Physiol 93: 1129–1145

    Google Scholar 

  64. Morishita F, Kawarabayashi T, Sakamoto Y, Shirakawa (1995) Role of the sodiumcalcium exchange mechanism and the effect of magnesium on sodium-free and high-potassium contractures in pregnant human myometrium. Amer J Obstet Gynecol 172: 186–195

    Google Scholar 

  65. Nakanishi T, Jarmakani JM (1981) Effect of extracellular sodium on mechanical function in the newborn rabbit. Dev Pharmacol Ther 2: 188–200

    Google Scholar 

  66. Nakasaki Y, Iwamoto T, Hanada H, Imagawa T, Shigekawa M (1993) Cloning of the rat aortic smooth muscle Na+/Ca2+ exchanger and tissue-specific expression of isoforms. J Biochem 114: 528–534

    Google Scholar 

  67. Nicoll DA, Longoni S, Philipson KD (1990) Molecular cloning and functional expression of the cardiac sarcolemmal Na+−Ca2+ exchanger. Science 250: 562–565

    Google Scholar 

  68. Nicoll DA, Barros BR, Philipson KD (1991) Na+−Ca2+ exchangers from rod outer segments and cardiac sarcolemma: comparisonof properties. Amer J Physiol 260: C1212-C1216

    Google Scholar 

  69. Nicoll DA, Quednau B, Qui Z, Xia YR, Lusis AJ, Philipson KD (1996) Cloning of a third mammalian Na+−Ca2+ exchanger: NCX3. Biophys J (in press)

  70. Nilius B, Albitz R, Linde T (1988) Mechanisms involved in generation of oscillatory afterpotentials in myocardium. Biomed Biochim Acta 47: 163–171

    Google Scholar 

  71. O'Neill SC, Valdeolmillos M, Lamont C, Donoso P, Eisner DA (1991) The contribution of Na−Ca exchange to relaxation in mammalian cardiac muscle. Ann NY Acad Sci 639: 444–452

    Google Scholar 

  72. Philipson KD (1990) The cardiac Na+−Ca2+ exchanger: dependence on membrane evironment. Cell Biol Intl Rep 14: 305–309

    Google Scholar 

  73. Philipson KD, Nicoll DA (1992) Na+−Ca2+ exchange. Curr Op Cell Biol 4: 678–683

    Google Scholar 

  74. Philipson KD, Nicoll DA, Matsuoka S, Hryshko LV, Levitsky DO, Weiss JN (1996) Molecular regulation of the Na+−Ca2+ exchanger. Proceedings of the Third International Conference on Sodium-Calcium Exchange. New York Academy of Sciences, New York

    Google Scholar 

  75. Porzig H, Li Z, Nicoll DA, Philipson KD (1993) Mapping of the cardiac sodium-calcium exchanger with monoclonal antibodies. Amer J Physiol 265: C748-C758

    Google Scholar 

  76. Powis DA, Clark CL, O'Brien KJ (1994) Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium 16: 377–390

    Google Scholar 

  77. Reeves JP, Bailey CA, Hale CC (1986) Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J Biol Chem 261: 4948–4955

    Google Scholar 

  78. Reilander H, Achilles A, Friedel U, Maul G, Lottspeich F, Cook NJ (1992) Primary structure and functional expression of the Na/Ca, K exchanger from bovine rod photoreceptors. EMBO J 11 1689–1695

    Google Scholar 

  79. Reilly RF, Shugrue CA (1992) cDNA cloning of a renal Na+−Ca2+ exchanger. Amer J Physiol 262: F1105-F1109

    Google Scholar 

  80. Sahin-Toth M, Nicoll DA, Frank JS, Philipson KD, Friedlander M (1995) The cleaved N-terminal signal sequence of the cardiac Na+−Ca2+ exchanger is not required for functional membrane integration. Biochem Biophys Res Comm 212: 968–974

    Google Scholar 

  81. Schnetkamp PPM, Basu DK, Szerencsei RT (1989) Na+−Ca2+ exchange in bovine rod outer segments requires and transports K+. Amer J Physiol 257: C153-C157

    Google Scholar 

  82. Schwarz E, Benzer S (1996) Expression and evolution of Calx, a sodium-calcium exchanger of Drosophila melanogaster. (submitted)

  83. Sham JSK, Cleeman L, Morad M (1992) Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+−Ca2+ exchange. Science 255: 850–853

    Google Scholar 

  84. Short CL, Monk RD, Bushinsky DA, Krieger NS (1994) Hormonal regulation of Na+−Ca2+ exchange in osteoblast-like cells. J Bone Mineral Res 9: 1159–1166

    Google Scholar 

  85. Simchowitz L, Cragoe EJ (1988) Na+−Ca2+ exchange in human neutrophils. Amer J Physiol 254: C150-C164

    Google Scholar 

  86. Vemuri R, Philipson KD (1987) Phospholipid composition modulates the Na+−Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles. Biochim Biophys Acta 937: 258–268

    Google Scholar 

  87. Vetter R, Kemsies C, Schulze W (1987) Sarcolemmal Na+−Ca2+ exchange and sarcoplasmic reticulum Ca2+ uptake in several cardiac preparations. Biomed Biochim Acta 46: S375-S381

    Google Scholar 

  88. Vigne P, breittmayer JP, Duval D, Frelin C, Lazdunski M (1988) The Na+/Ca2+ antiporter in aortic smooth muscle colls. J Biol Chem 263: 8078–8083

    Google Scholar 

  89. Vites AM, Wasserstrom JA (1995) Calcium influx via Na/Ca exchange and calcium current can both trigger transient contractions in cat ventricular myocytes. Biophys J 68: 135a

    Google Scholar 

  90. Wasserstrom JA, Vites AM (1995) Na−Ca exchange triggers contraction in rat ventricular myocytes. Biophys J 68: 135a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hryshko, L.V., Philipson, K.D. Sodium-calcium exchange: Recent advances. Basic Res Cardiol 92 (Suppl 1), 45–51 (1997). https://doi.org/10.1007/BF00794067

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00794067

Key words

Navigation