Advertisement

Astrophysics and Space Science

, Volume 144, Issue 1–2, pp 535–547 | Cite as

Electron heating in superhigh mach number shocks

  • K. Papadopoulos
Article
  • 42 Downloads

Abstract

Fluid and MHD models, as well as direct extrapolation of the Earth's bow shock measurements in the high Mach number (HMN) range (3≤M F ≤12) to the superhigh Mach number (SHMN) range (M F >30–40) predict that the downstream electron pressurep e2 is only a negligible fraction of the Rankine-Hugoniot downstream pressurep2, i.e.,pe2/p2≈(M F 2 )−1. However, the interpretation of X-ray supernovae emissions, due to SHMN shock heating requirespe2/p2≈0(1). Following Alfvén we have used plasma physics experimental-theoretical data combined with magnetospheric observations to probe the physics of the SHMN shocks. It is shown below that inclusion of proper plasma physics considerations in the interaction of the reflected and transmitted ions and the electrons at the ‘foot’ of the shock leads to the surprising result that electron heating can dominate in the SHNM range. A stationary model of the shock structure is derived and shown to be the result of extrapolation of the high Mach number shock physics with incorporation of collective interactions at the foot.

Keywords

Mach Number Surprising Result Shock Structure Physic Consideration High Mach Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfvén, H.: 1981,Cosmic Plasma, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  2. Alfvén, H.: 1986a, in H. Garret, J. Feynman, and S. Gabriel (eds.),Space Technology Plasma Issues, NASA-JPL Publ. 86-49, p. 373.Google Scholar
  3. Alfvén, H.: 1986b, in H. Garret, J. Feynman, and S. Gabriel (eds.),Space Technology Plasma Issues, NASA-JPL Publ. 86-49, p. 373.Google Scholar
  4. Blandford, R. and Eichler, D.: 1987,Phys. Reports (in press).Google Scholar
  5. Chodura, R.: 1975,Nucl. Fusion 15, 55.Google Scholar
  6. Davidson, R. C., Kral, N. A., Papadopoulos, K. and Shanny, R.: 1970,Phys. Rev. Letters 24, 579.Google Scholar
  7. Forslund, D. W., Quest, K. B., Brackbill, J. U., and Lee, K.: 1984,J. Geophys. Res. 89, 2142.Google Scholar
  8. Goodrich, C. C.: 1985, ‘Collisionless Shocks in the Heliosphere’, in R. G. Stone and B. T. Tsurutani (eds.),Geophys. Monograph 34, p. 59.Google Scholar
  9. Greenstadt, E. W., Russell, C. T., Gosling, J. T., Bame, S. J., Paschmann, G., Parks, G. K. Anderson, K. A., Scarf, F. L., Anderson, R. R., Gurnett, D. A., Lin, R. P., Lin, C. S., and Reme, H.: 1980,J. Geophys. Res. 85, 2124.Google Scholar
  10. Ichimaru, S.: 1973,Basic Principles of Plasma Physics, W. A. Benjamin, Reading, Mass., pp. 139–142.Google Scholar
  11. Kennel, C. F., Edminston, J. P., and Hada, T.: 1985, ‘Collisionless Shocks in the Heliosphere’, in R. G. Stone and B. T. Usurutani (eds.),Geophys. Monograph 34, p. 59.Google Scholar
  12. Lampe, M., Manheimer W. M., and Papadopoulos, K., et al.: 1975, NRL Memo Rep. 3076, Naval Research Laboratory, Washington, D. C., pp. 1–82.Google Scholar
  13. Leroy, M. 1983,Phys. Fluids 26, 2742.Google Scholar
  14. Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S., and Papadopoulos, K.: 1981,Geophys. Res. Letters 8, 1269.Google Scholar
  15. Leroy, M. M., Winske, D., Goodrich, C. C. Wu, C. S., and Papadopoulos, K.: 1982,J. Geophys. Res. 87, 5081.Google Scholar
  16. McKee, C. F. and Hollenbach, D. J.: 1980Ann. Rev. Astron. Astrophys. 18, 219.Google Scholar
  17. Moses, S. K., Coroniti, F. V., Kennel, C. F., and Scarf, F. L.: 1984,Geophys. Res. Letters 11, 183.Google Scholar
  18. Moses, S. L., Coroniti, F. V., Kennel, C. F., and Scarf, F. L.: 1985a,Geophys. Res. Letters 12, 183.Google Scholar
  19. Moses, S. L., Coroniti, F. V., Kennel, C. F., and Scarf, F. L.: 1985b,Geophys. Res. Letters 12, 609.Google Scholar
  20. Papadopoulos, K.: 1977,Rev. Geophys. Space Phys. 15, 113.Google Scholar
  21. Papadopoulos, K.: 1985, ‘Collisionless Shocks in the Heliosphere’ in R. G. Stone and B. T. Tsurutani (eds.),Geophys. Monograph 34, p. 59.Google Scholar
  22. Paschmann, G. and Sckopke, N.: 1983, in G. Haerendel and B. Battrick eds.,Topics in Plasma-Astro and Space Physics, Max-Planck Inst., München, p. 139.Google Scholar
  23. Paschmann, G., Sckopke, N., Bame, S. J., and Gosling, J. T.: 1982,Geophys. Res. Letters 9, 881.Google Scholar
  24. Quest, K. B.: 1985,Phys. Rev. Letters 54, 1872.Google Scholar
  25. Quest, K. B.: 1986,J. Geophys. Res. 91, 8805.Google Scholar
  26. Russell, C. T., Hoppe, M. N., and Livsey, W. A.: 1982,Nature 296, 45.Google Scholar
  27. Sagdeev, R. Z.: 1966, in M. A. Leontovich (ed.),Reviews of Plasma Physics, Vol. 4, Consultants Bureau, New York, pp. 23–90.Google Scholar
  28. Sagdeev, R.: 1979,Rev. Mod. Phys. 51, 1.Google Scholar
  29. Sckopke, N., Paschmann, G., Bame, G., Gosling, S. J., and Russel, C. T.: 1983,J. Geophys. Res. 88, 6121.Google Scholar
  30. Scudder, J. D., Mangeney, A., Gosling, J. T., Paschmann, G., Wu, C. S., Russell, C. T., Rodriguez, P., Anderson, R. R., Bame, S. J., Fitzenreiter, R. J., Harvey, C., Hoppe, M., Lacombe, C., Ogilvie, K. W. and Sckopke, N.: 1986,J. Geophys. Res. 91, A10, 11, 019–11, 052.Google Scholar
  31. Tidman, D. A., Krall, N. A.: 1971Shock Waves in Collisionless Plasmas, John Wiley, New York, 1–85.Google Scholar
  32. Wu, C. S., Zhou, Y. M., Tsai, S. T., Guo, Winske, D., and Papadopoulos, K.: 1983,Phys. Fluids 26, 1259.Google Scholar
  33. Wu, C. S., Winske, D., Zhou, Y. M., Tsai, S. T., Rodriguez, P., Tanaka, M., Papadopoulos, K., Akimoto, K., Lin, C. S., Leroy, M. M., and Goodrich, C. C.: 1984,Space Sci. Rev. 37, 63.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • K. Papadopoulos
    • 1
  1. 1.Department of Physics and AstronomyUniversity of MarylandCollege ParkUSA

Personalised recommendations