Springer Seminars in Immunopathology

, Volume 18, Issue 1, pp 125–148 | Cite as

Mechanisms of action of interferon-β in multiple sclerosis

  • Barry G. W. Arnason
  • Amit Dayal
  • Zhi Xiang Qu
  • Mark A. Jensen
  • Kursad Genç
  • Anthony T. Reder
Article

Keywords

Internal Medicine Multiple Sclerosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis: I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655Google Scholar
  2. 2.
    Arnason BGW (1993) Interferon beta in multiple sclerosis. Neurology 43:641Google Scholar
  3. 3.
    IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group (1995) Interferon beta-1B in the treatment of multiple sclerosis: final outcome of the randomized controlled trial. Neurology 45:1277Google Scholar
  4. 4.
    Paty DW, Li DKB, UBC MS/MRI Study Group, IFNB Multiple Sclerosis Study Group (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:662Google Scholar
  5. 5.
    Arnason BGW, Reder AT (1994) Interferons and multiple sclerosis. Clin Neuropharmacol 17:495Google Scholar
  6. 6.
    Durelli L, Bongioanni MR, Cavallo R, Ferrero B, Ferri R, Ferrio MF, Bradac GB, Riva A, Vai S, Geuna M, Bergamini L, Bergamasco B (1994) Chronic systemic high dose recombinant interferon alfa-2a reduces exacerbation rate, MRI signs of disease activity, and lymphocyte interferon gamma production in relapsing-remitting multiple sclerosis. Neurology 44:406Google Scholar
  7. 7.
    Jacobs L, Cookfair D, Rudick R, Herndon R, Richert J, Salazar A, Fischer J, Granger C, Simon J, Goodkin D, MSCR Group (1994) Results of a phase III trial of intramuscular recombinant beta interferon as treatment for multiple sclerosis (abstract). Ann Neurol 36:259Google Scholar
  8. 8.
    Reference deletedGoogle Scholar
  9. 9.
    Willoughby EW, Grochowski E, Li DKB, Oger J, Kastrukoff LF, Paty DW (1989) Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann Neurol 25:43Google Scholar
  10. 10.
    Noronha ABC, Richman DP, Arnason BGW (1980) Detection of in vivo stimulated cerebrospinal fluid lymphocytes in multiple sclerosis by flow cytometry. N Engl J Med 303:713Google Scholar
  11. 11.
    Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho E-S (1993) Multiple sclerosis: remyelination of nascent lesions. Ann Neurol 33:137Google Scholar
  12. 12.
    Prineas JW, Kwon EE, Goldenberg PZ, Ilyas AA, Quarles RH, Benjamins JA, Sprinkle TJ (1989) Multiple sclerosis: oligodendrocyte proliferation and differentiation in fresh lesions. Lab Invest 61:489Google Scholar
  13. 13.
    Rodriguez M, Scheithauer BW, Forbes G, Kelly PJ (1993) Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clinic Proc 68:627Google Scholar
  14. 14.
    Ozawa K, Suchanek G, Breitschopf H, Brück W, Budka H, Jellinger K, Lassmann H (1994) Patterns of oligodendroglia pathology in multiple sclerosis. Brain 117:1311Google Scholar
  15. 15.
    Brück W, Schmied M, Suchanek G, Brüick Y, Breitschopf H, Poser S, Piddlesden S, Lassmann H (1994) Oligodendrocytes in the early course of multiple sclerosis. Ann Neurol 35:65Google Scholar
  16. 16.
    Van Walderveen MAA, Barkhof F, Hommes OR, Polman CH, Tobi H, Frequin STFM, VALK J (1995) Correlating MR1 and clinical disease activity in multiple sclerosis: relevance of hypointense lesions on short-TR/short-TE (T1 -weighted) spin-echo images. Neurology 45:1684Google Scholar
  17. 17.
    Paty DW, Li DKB, Oger JJ-F, Kastrukoff L, Koopmans R, Tanton E, Zhao GJ (1994) Magnetic resonance imaging in the evaluation of clinical trials in multiple sclerosis. Ann Neurol 36:595Google Scholar
  18. 18.
    Miller DH (1994) Magnetic resonance in monitoring the treatment of multiple sclerosis. Ann Neurol 36:591Google Scholar
  19. 19.
    Filippi M, Horsfield MA, Morissey SP, MacManus DG, Rudge P, McDonald WI, Miller DH (1994) Quantitative brain MR1 lesion load predicts the course of clinically isolated syndromes suggestive of multiple sclerosis. Neurology 44:635Google Scholar
  20. 20.
    Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112:133Google Scholar
  21. 21.
    Weinshenker BG, Bass B, Rice GPA, Noseworthy J, Carriere W, Baskerville J, Ebers GC (1989) The natural history of multiple sclerosis: a geographically based study. 2. Predictive value of the early clinical course. Brain 112:1419Google Scholar
  22. 22.
    Greenwood BG, cited in: Psychosocial factors in multiple sclerosis. Proceedings of the MS Forum Modern Management Workshop, Rome 1995, Professional Postgraduate Services, Worthing U.K., p 28Google Scholar
  23. 23.
    Cella DF, Dineen K, Arnason B, Reder A, Webster KA, Karabatsos G, Chang C-H, Lloyd S, Mo F, Stewart J, Stefoski D (1996) Validation of the functional assessment of multiple sclerosis (FAMS) quality of life instrument. Neurology (in press)Google Scholar
  24. 24.
    Sharief MK, Hentges R (1991) Association between tumor necrosis factor-α and disease progression in patients with multiple sclerosis. N Engl J Med 325:467Google Scholar
  25. 25.
    Maimone D, Gregory S, Arnason BGW, Reder AT (1991) Cytokine levels in the cerebrospinal fluid and sera of patients with multiple sclerosis. J Neuroimmunol 32:67Google Scholar
  26. 26.
    Rothwell NJ, Relton JK (1993) Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehav Rev 17:217Google Scholar
  27. 27.
    Pliskin NH, Towle VL, Hamer DP, Reder AT, Noronha A, Pietre S, Arnason BGW (1994) The effects of interferon-beta on cognitive function in multiple sclerosis (abstract). Ann Neurol 36:326Google Scholar
  28. 28.
    Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet I:1313Google Scholar
  29. 29.
    Panitch HS, Bever CT, Katz E, Johnson KP (1991) Upper respiratory tract infections trigger attacks of multiple sclerosis in patients treated with interferon-β (abstract). J Neuroimmunol 35[Suppl 1]:125Google Scholar
  30. 30.
    Andersen O, Lygner P-E, Bergström T, Andersson M, Vahlne A (1993) Viral infections trigger multiple sclerosis relapses: a prospective seroepidemiological study. J Neurol 240:417Google Scholar
  31. 31.
    Reich N, Pine R, Levy D, Darnell JE Jr (1988) Transcription of interferon-stimulated genes is induced by adenovirus particles but is suppressed by E1A gene products. J Virol 62:114Google Scholar
  32. 32.
    Panitch HS (1994) Influence of infection on exacerbations of multiple sclerosis. Ann Neurol 36:S25Google Scholar
  33. 33.
    Panitch HS, Hirsch RL, Haley AS, Johnson KP (1987) Exacerbations of multiple sclerosis with gamma interferon. Lancet I:893Google Scholar
  34. 34.
    Reference deletedGoogle Scholar
  35. 35.
    Yu C-L, Haskard DO, Cavender D, Johnson AR, Ziff M (1985) Human gamma interferon increases the binding of T lymphocytes to endothelial cells. Clin Exp Immunol 62:554Google Scholar
  36. 36.
    May MJ, Ager A (1992) ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon-γ, tumor necrosis factor-α and interleukin-1β. Eur J Immunol 22:219Google Scholar
  37. 37.
    Pober JS, Gimbrone MA Jr, Lapierre LA, et al (1986) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137:1893Google Scholar
  38. 38.
    Thorhill MH, Aung UK, Haskard DO (1990) IL-4 increases human endothelial cell adhesiveness for T cells but not for neutrophils. J Immunol 144:3050Google Scholar
  39. 39.
    McCarron RM, Wang L, Racke MK, McFarlin DE, Spatz M (1993) Cytokine-regulated adhesion between encephalitogenic T lymphocytes and cerebrovascular endothelial cells. J Neuroimmunol 43:23Google Scholar
  40. 40.
    Eguchi K, Kawakami A, Nakashima M, Ida H, Sakito S, Matsuoka N, Terada K, Sakai M, Kawabe Y, Fukada T, Ishimaru T, Kurouji K, Fujita N, Aoyaji T, Maeda K, Nagataki S (1992) Interferonalpha and dexamethasone inhibit adhesion of T cells to endothelial cells and synovial cells. Clin Exp Immunol 88:448Google Scholar
  41. 41.
    Rotteveel FTM, Kuenen B, Kokkelink I, Meager A, Lucas CJ (1990) Relative increase of inflammatory CD4+ T cells in the cerebrospinal fluid of multiple sclerosis patients and control individuals. Clin Exp Immunol 79:15Google Scholar
  42. 42.
    Brod SA, Benjamin D, Haller DA (1991) Restricted T cell expression of IL-2/IFN-γ mRNA in human inflammatory disease. J Immunol 147:810Google Scholar
  43. 43.
    Benvenuto R, Paroli M, Buttinelli C, Franco A, Barnaba V, Fieschi C, Balsano F (1991) Tumor necrosis factor-alpha synthesis by cerebrospinal-fluid-derived T cell clones from patients with multiple sclerosis. Clin Exp Immunol 84:97Google Scholar
  44. 44.
    Trotter JL, Collins KG, Veen RC van der (1991) Serum cytokine levels in chronic progressive multiple sclerosis: interleukin-2 levels parallel tumor necrosis factor-α levels. J Neuroimmunol 33:29Google Scholar
  45. 45.
    Beck J, Rodot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78:318Google Scholar
  46. 46.
    Lu C-Z, Jensen MA, Arnason BGW (1993) Interferon gamma- and interleukin-4-secreting cells in multiple sclerosis. J Neuroimmunol 46:123Google Scholar
  47. 47.
    Traugott U, Lebon P (1988) Multiple sclerosis: involvement of interferons in lesion pathogenesis. Ann Neurol 24:243Google Scholar
  48. 48.
    Traugott U, Lebon P (1988) Interferon-γ and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J Neurol Sci 84:257Google Scholar
  49. 49.
    Zipp F, Weber F, Huber S, Sorgiu S, Czlonkowska A, Holler E, Albert E, Weiss EH, Wekerle H, Hohlfeld R (1995) Genetic control of multiple sclerosis: increased production of lymphotoxin and tumor necrosis factor-α by HLA-DR2+ T cells. Ann Neurol 38:723Google Scholar
  50. 50.
    Nedwin GE, Svedersky LP, Bringman TS, Palladino MA Jr, Goeddel DV (1985) Effect of interleukin 2, interferon-γ, and mitogens on the production of tumor necrosis factors α andβ. J Immunol 135:2492Google Scholar
  51. 51.
    Selmaj K, Raine CS, Farooq M, Norton WT, Brosnan CF (1991) Cytokine cytotoxicity against oligodendrocytes: apoptosis induced by lymphotoxin. J Immunol 147:1522Google Scholar
  52. 52.
    Stone-Wolff DS, Yip YK, Kelker HC, Le M-M, Henriksen-Destefano D, Rubin BY, Rinderknecht E, Aggarwal BB, Vilček J (1984) Interrelationships of human interferon-gamma with lymphotoxin and monocyte cytotoxin. I Exp Med 159:828Google Scholar
  53. 53.
    Powell MB, Mitchell D, Lederman J, Buchmeier J, Zamvil SS, Graham M, Ruddle NH, Steinman L (1990) Lymphotoxin porduction by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol 2:539Google Scholar
  54. 54.
    Selmaj K, Raine CS, Cannella B, Brosnan CF (1991) Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 87:949Google Scholar
  55. 55.
    Hofman FM, Hinton DR, Johnson K, Merrill JE (1989) Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 170:607Google Scholar
  56. 56.
    Selmaj KW, Raine CS (1988) Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 23:339Google Scholar
  57. 57.
    Soliven B, Szuchet S, Nelson DJ (1991) Tumor necrosis factor inhibits K+ current expression in cultured oligodendrocytes. J Membr Biol 124:127Google Scholar
  58. 58.
    Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB (1990) An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172:1193Google Scholar
  59. 59.
    Selmaj KW, Farooq M, Norton WT, Raine CS, Brosnan CF (1990) Proliferation of astrocytes in vitro in response to cytokines: a primary role for tumor necrosis factor. J Immunol 144:129Google Scholar
  60. 60.
    Yong VW, Moumdijan R, Yong FP, Ruijs TC, Freedman MS, Cashman N, Antel JP (1991) γ-Interferon promotes proliferation of adult human astrocytes in vitro and reactive gliosis in the adult mouse brain in vivo. Proc Natl Acad Sci USA 88:7016Google Scholar
  61. 61.
    Giulian D, Lachman LB (1985) Interleukin-I stimulation of astroglial proliferation after brain injury. Science 228:497Google Scholar
  62. 62.
    Benveniste EN, Sparacio SM, Bethea JR (1989) Tumor necrosis factor-α on the expression of an Ia antigen on a murine macrophage cell line. J Immunol 137:2853Google Scholar
  63. 63.
    Jacobsen H, Mestan J, Mittnacht S, Dieffenbach CW (1989) Beta interferon subtype 1 induction by tumor necrosis factor. Mol Cell Biol 9:9037Google Scholar
  64. 64.
    Rubin BY, Anderson SL, Lunn RM, Richardson NK, Hellerman GR, Smith LJ, Old LJ (1988) Tumor necrosis factor and IFN induce a common set of proteins. J Immunol 141:1180Google Scholar
  65. 65.
    Reyes VE, Ballas ZK, Singh H, Klimpel GR (1986) Interleukin-2 induces IFN-α/β production in murine bone marrow cells. Cell Immunol 102:374Google Scholar
  66. 66.
    Hertzog PJ, Wright A, Harris G, Linnane AW, MacKay IR (1991) Intermittent interferonemia and interferon responses in multiple sclerosis. Clin Immunol Immunopathol 58:18Google Scholar
  67. 67.
    Kelley VE, Fiers W, Strom TB (1984) Cloned human interferon-γ, but not interferon-β orα, induces expression of HLA-DR determinants by fetal monocytes and myeloid leukemic cell lines. J Immunol 132:240Google Scholar
  68. 68.
    Meinl E, Aloisi F, Ertl B, Weber F, deWall Malefyt R, Wekerle H, Hohlfeld R (1994) Multiple sclerosis: immunomodulatory effects of human astrocytes on T cells. Brain 117:1323Google Scholar
  69. 69.
    Ling PD, Warren MK, Vogel SN (1985) Antagonistic effect of interferon-beta on the interferongamma-induced expression of Ia antigen in murine macrophages. J Immunol 135:1857Google Scholar
  70. 70.
    Noronha A, Toscas A, Jensen MA (1993) Interferon O decreases T cell activation and interferonγ production in multiple sclerosis. J Neuroimmunol 46:145Google Scholar
  71. 71.
    Panitch HS, Folus JS, Johnson KP (1987) Recombinant beta interferon inhibits gamma interferon production in multiple sclerosis. Ann Neurol 22:139Google Scholar
  72. 72.
    Billiau A, De Somer P, Edy VG, De Clercq E, Heremans H (1979) Human fibroblast interferon for clinical trials: pharmacokinetics and tolerability in experimental animals and humans. Antimicrob Agents Chemother 16:56Google Scholar
  73. 73.
    DeSomer P, Edy VG, Billau A (1977) Interferon-induced skin reactivity in man. Lancet 11:47Google Scholar
  74. 74.
    Collart MA, Belin D, Vassalli J-D, Kossodo S de, Vassalli P (1986)γ Interferon enhances macrophage transcription of the tumor necrosis factor/cachetin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med 164:2113Google Scholar
  75. 75.
    Spear GT, Paulnock DM, Jordan RL, Meltzer DM, Merritt JA, Borden EC (1987) Enhancement of monocyte class I and II histocompatibility antigen expression in man by in vivoβ-interferon. Clin Exp Immunol 69:107Google Scholar
  76. 76.
    Chiang J, Gloff CA, Yoshizawa CN, Williams GJ (1993) Pharmacokinetics of recombinant human interferon-β ser in healthy volunteers and its effect on serum neopterin. Pharm Res 10:567Google Scholar
  77. 77.
    Huber C, Batchelor JR, Fuchs D, Hausen A, Lang A, Niedenwieser D, Reibnegger G, Swetly P, Troppmair J, Wachter H (1984) Immune response-associated production of neopterin: release from macrophages primarily under control of interferon-gamma. J Exp Med 160:310Google Scholar
  78. 78.
    Barak M, Gruener N (1991) Neopterin augmentation of tumor necrosis factor production. Immunol Lett 30:101Google Scholar
  79. 79.
    Moutabarrik A, Takahara S, Namiki M, Kameoka H, Seguchi T, Yokokawa K, Takano Y, Sonada T, Ishibashi M, Zaid D, et al (1992) Contrasting effects of interferon-gamma and interleukin-4 on neopterin generation from human adhesion monocytes. Lymphokine Cytokine Res 11:327Google Scholar
  80. 80.
    Dayal A, Jensen MA, Lledo A, Arnason BGW, (1995) Interferon gamma-secreting cells in multiple sclerosis patients treated with interferon beta-1B. Neurology 45:2173Google Scholar
  81. 81.
    Dayal A, Qu Z-X, Jensen M, Amason BOW (1996) Transretinoic acid reverses induction of interferonγ-secreting cells by interferonβ-1B. Neurology (in press)Google Scholar
  82. 82.
    Olsson T (1992) Cytokines in neuroinflammatory disease: role of myelin autoreactive T cell production of interferon-gamma. J Neuroimmunol 40:211Google Scholar
  83. 83.
    Mustafa MI, Diener P, Höjeberg B, Van der Meide P, Olsson T (1991) T cell immunity and interferon-γ secretion during experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 31:165Google Scholar
  84. 84.
    Mustafa MI, Diener P, Sun J-B, Link H, Olsson T (1993) Immunopharmacologic modulation of experimental allergic encephalomyelitis: low-dose cyclosporin-A treatment causes disease relapse and increased system T and B cell-mediated myelin-directed autoimmunity. Scand J Immunol 38:499Google Scholar
  85. 85.
    Johns L, Franders KC, Sriram S (1991) Successful treatment of experimental allergic encephalomyelitis with transforming growth factor-β1. Neurology 41:318Google Scholar
  86. 86.
    Racke MK, Dhib-Jalbut S, Cannella B, Albert PS, Raine CS, McFarlin DE (1991) Prevention and treatment of chronic relapsing experimental allergic encephalomyelitis by transforming growth factor-β1. J Immunol 146:3012Google Scholar
  87. 87.
    Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA, Thorbecke GJ (1991) Protective effect of transforming growth factorβ 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 88:2918Google Scholar
  88. 88.
    Koh D-R, Fung Leung W-P, Ho A, Gray D, Acha-Orbea H, Mak T-W (1992) Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−−/−− mice. Science 256:1210Google Scholar
  89. 89.
    Arnason BGW, Antel JP (1978) Suppressor cell function in multiple sclerosis. Ann Immunol (Paris) 129C:159Google Scholar
  90. 90.
    Antel JP, Arnason BGW, Medof ME (1979) Suppressor cell function in multiple sclerosis: correlation with clinical disease activity. Ann Neurol 5:338Google Scholar
  91. 91.
    Antel JP, Bania MB, Reder A, Cashman N (1985) Activated suppressor cell dysfunction in progressive multiple sclerosis. J Immunol 137:137Google Scholar
  92. 92.
    Noronha A, Toscas A, Jensen MA (1990) Interferon beta augments suppressor cell function in multiple sclerosis. Ann Neurol 27:207Google Scholar
  93. 93.
    Noronha A, Toscas A, Jensen MA (1992) Contrasting effects of alpha, beta and gamma interferons on nonspecific suppressor function in multiple sclerosis. Ann Neurol 31:103Google Scholar
  94. 94.
    Noronha A, Toscas A, Arnason BGW, Jensen M (1994) IFN-beta augments in vivo suppressor function in MS (abstract). Neurology 44[Suppl 2]:A212Google Scholar
  95. 95.
    Tsunawaki S, Sporn M, Ding A, Nathan C (1988) Deactivation of macrophages by transforming growth factor-β. Nature 334:260Google Scholar
  96. 96.
    Fontana A, Constam DB, Frei K, Malipiero U, Pfister HW (1992) Modulation of the immune response by transforming growth factor beta. Int Arch Allergy Immunol 99:1Google Scholar
  97. 97.
    Gamble JR, Vadas MA (1991) Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor 146:1149Google Scholar
  98. 98.
    Karpus WJ, Swanborg RH (1991) CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol 146:1163Google Scholar
  99. 99.
    Stevens DB, Gould KE, Swanborg RH (1994) Transforming growth factor-β 1 inhibits tumor necrosis factorα/lymphotoxin production and adoptive transfer of disease by effector cells of autoimmune encephalomyelitis. J Neuroimmunol 51:77Google Scholar
  100. 100.
    Beck J, Rondot P, Jullien P, Wietzerbin J, Lawrence DA (1991) TGF-β-like activity produced during regression of exacerbations in multiple sclerosis. Acta Neurol Scand 84:452Google Scholar
  101. 101.
    Noronha A, Jensen M, Toscas A (1993) TGF-β activity in MS: effect of IFN-β. Neurology 43 [Suppl]:355Google Scholar
  102. 102.
    Panitch HS, Folus JS, Johnson KP (1991) Activated suppressor cells inhibit synthesis of interferon γ in patients with multiple sclerosis and normal subjects (abstract). J Neuroimmunol 36:S186Google Scholar
  103. 103.
    Qu Z-X, Jensen MA, Arnason BGW (1995) Retinoic acid potentiates the ability of interferon beta-1B to augment suppressor cell function. Neuroscience 21 (part 2):1151Google Scholar
  104. 104.
    Massacesi L, Abbamondi AL, Giorgi C, Sarlo F, Lolli F, Amaducci L (1987) Suppression of experimental allergic encephalomyelitis by retinoic acid. J Neurol Sci 80:55Google Scholar
  105. 105.
    Racke MK, Burnette D, Pak S-H, McFarlin DE, Scott DE (1995) Retinoid treatment of experimental allergic encephalomyelitis: IL-4 production correlates with improved disease course. J Immunol 154:450Google Scholar
  106. 106.
    Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS, Hamilton JA (1989) Potential antiinflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factorα, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA 86:3803Google Scholar
  107. 107.
    Wong HL, Lotze MT, Wahl LM, Wahl SM (1992) Administration of recombinant IL-4 to humans regulates gene expression, phenotype, and function in circulating monocytes. J Immunol 148:2118Google Scholar
  108. 108.
    Vannier E, Miller LC, Dinarello CA (1992) Coordinated andinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 89:4076Google Scholar
  109. 109.
    Lehn M, Weiser WY, Engelhorn S, Gills S, Remold HG (1989) IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-γ. J Immunol 143:3020Google Scholar
  110. 110.
    Kennedy MK, Torrance DS, Picha KS, Mohler KM (1992) Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. J Immunol 149:2496Google Scholar
  111. 111.
    Jensen MA, Noronha A, Toscas A, Arnason BGW (1996) Antigenically non-specific global suppression of IL-2 and IFN-γ synthesis and an anergic like state in central nervous system infiltrating mononuclear cells precedes recovery from acute monophasic experimental allergic encephalomyelitis. Autoimmunity (in press)Google Scholar
  112. 112.
    Karpus WJ, Swanborg RH (1989) CD4+ suppressor cells differentially affect the production of IFN-γ by effector cells of experimental autoimmune encephalomyelitis. J Immunol 143:3492Google Scholar
  113. 113.
    Nedwin GE, Svedersky LP, Bringman TS, Palladino MA Jr, Goeddel DV (1985) Effect of interleukin 2, interferon-y, and mitogens on the production of tumor necrosis factorsα andβ. J Immunol 135:2492Google Scholar
  114. 114.
    Hermann F, Cannistra SA, Lindemann A, Blohm D, Rambaldi A, Mertelsmann RH, Griffin JD (1989) Functional consequences of monocyte IL-2 receptor expression: induction of IL-1β secretion by IFN-γ and IL-2. J Immunol 142:139Google Scholar
  115. 115.
    Boraschi D, Pasqualetto E, Ghezzi P, Salmona M, Bartalini M, Barbarulli G, Censivi S, Soldateschi D, Tagliabuc A (1982) Dissociation between macrophage tumoricidal capacity and suppressive activity: analysis with macrophage-defective mouse strains. J Immunol 131:1707Google Scholar
  116. 116.
    Go NF, Castle BE, Barrett R, Kastelein A, Dang W, Mosmann TR, Moore KW, Howard M (1990) Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172:1625Google Scholar
  117. 117.
    Chouaib S, Fradelizi D (1982) The mechanism of inhibition of human IL 2 production. J Immunol 129:2463Google Scholar
  118. 118.
    Betz M, Fox BS (1991) Prostaglandin E2 inhibits production of Th1 lymphokines but not of Th2 lymphokines. J Immunol 146:108Google Scholar
  119. 119.
    Chouaib S, Welte K, Mertelsmann R, Dupont B (1985) Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin-2 production and down-regulation of transferrin receptor expression. J Immunol 135:1172Google Scholar
  120. 120.
    Rappaport RS, Dodge GR (1982) Prostaglandin E inhibits the production of human interleukin 2. J Exp Med 155:943Google Scholar
  121. 121.
    Ferreri NR, Sarr T, Askenase PW, Ruddle NH (1992) Molecular regulation of tumor necrosis factor-alpha and lymphotoxin production in T cells: inhibition by prostaglandin E2. J Biol Chem 267:9443Google Scholar
  122. 122.
    Widomski DL, Walsh RE, Baron DA, Hidvegi MI, Fretland DJ, Collins PW, Gaginella TS (1991) Effects of the prostaglandin analogue misoprostol on inflammatory mediator release by human monocytes. Agents Actions 34:30Google Scholar
  123. 123.
    Reder AT, Thapar M, Sapugay AM, Jensen MA (1995) Eicosenoids modify experimental allergic encephalomyelitis. Am J Ther 2:1Google Scholar
  124. 124.
    Reder AT, Arnason BGW (1995) Trigeminal neuralgia in multiple sclerosis relieved by a prostaglandin E analogue. Neurology 45:1097Google Scholar
  125. 125.
    Dore-Duffy P, Perry W, Kuo H-H (1983) Interferon-mediated inhibition of prostaglandin synthesis in human mononuclear leukocytes. Cell Immunol 79:232Google Scholar
  126. 126.
    Boraschi D, Soldateschi D, Tagliabue A (1982) Macrophage activation by interferon: dissociation between tumoricidal capacity and suppressive activity. Eur J Immunol 12:320Google Scholar
  127. 127.
    Reder AT (1991) IFN-β and IFN-γ modify expression of monocyte surface proteins. J Interferon Res 11 [Suppl 1]:121Google Scholar
  128. 128.
    Dentener MA, Bazil V, Von Asmuth EJU, Ceska M, Buurman WA (1993) Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-α, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol 150:2885Google Scholar
  129. 129.
    Gimmi CD, Freeman GJ, Gribben JG, Sugita K, Freedman AS, Morimoto C, Nadler LM (1991) B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 88:6575Google Scholar
  130. 130.
    Kuchroo VK, Das MP, Brown JA, Ranger AM, Zamvil SS, Sobel RA, Weiner HL, Nabavi N, Glimcher LH (1995) B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell 80:707Google Scholar
  131. 131.
    Genç K, Reder AT (1995) IFN-β-1b reverses elevated lymphocyte B7-1 in MS (abstract). J Neuroimmunol 52 [Suppl 1]:20Google Scholar
  132. 132.
    Ding L, Linsley PS, Huang L-Y, Germain RN, Shevach EM (1993) IL-10 inhibits macrophage (Mo) co-stimulatory activity by selectively inhibiting the upregulation of B7 expression. J Immunol 150:180AGoogle Scholar
  133. 133.
    Ransohoff RM, Devajyothi C, Estes ML, Babcock G, Rudick RA, Frohman EM, Bama BP (1991) Interferon-β specifically inhibits interferon-γ-induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. J Neuroimmunol 33:103Google Scholar
  134. 134.
    Joseph J, Knobler RL, D'Imperio C, Lublin FD (1988) Down-regulation of interferon-γ-induced class II expression on human glioma cells by recombinant interferon-β: effects of dosage treatment schedule. J Neuroimmunol 20:39Google Scholar
  135. 135.
    Matsumoto Y, Hanawa H, Tsuchida M, Abo T (1993) In situ inactivation of infiltrating T cells in the central nervous system with autoinunune encephalomyelitis: the role of astrocytes. Immunology 79:381Google Scholar
  136. 136.
    Weber F, Meinl E, Aloisi F, Nevinny-Stickel C, Albert E, Wekerle H (1994) Human astrocytes are only partially competent antigen presenting cells: possible implications for lesion development in multiple sclerosis. Brain 117:59Google Scholar
  137. 137.
    MacPhee IAM, Antoni FA, Mason DW (1989) Spontaneous recovery of rats from experimental allergic encephalomyelitis is dependent on regulation of the immune system by endogenous adrenal corticosteroids. J Exp Med 169:431Google Scholar
  138. 138.
    Reder AT, Lowy MT (1992) Interferon-beta treatment does not elevate cortisol in multiple sclerosis. J Interferon Res 12:195Google Scholar
  139. 139.
    Pender MP, McCombe PA, Yoong G, Nguyen KB (1992) Apoptosis ofαβT lymphocytes in the nervous system in experimental autoimmune encephalomyelitis. J Autoimmun 5:401Google Scholar
  140. 140.
    Hecht TT, Longo DL, Matis LA (1983) The relationship between immune interferon production and proliferation in antigen-specific MHC-restricted T cell lines and clones. J Immunol 131:1049Google Scholar
  141. 141.
    Liu Y, Janeway CA Jr (1990) Interferon γ plays a critical role in induced cell death of effector T cells: a possible third mechanism of self-tolerance. J Exp Med 172:1735Google Scholar
  142. 142.
    Heremans H, Dillen C, Dijkmans R, Grau G, Billiau A (1989) The role of cytokines in various animals models of inflammation. Lymphokine Res 8:329Google Scholar
  143. 143.
    Voorthuis JAC, Uitdehaag BMJ, DeGroot CJA, Goede PH, Van Der Meide PH, Dijkstra CD (1990) Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol 81:183Google Scholar
  144. 144.
    Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H, Meulepas E, Carton H (1988) Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J Immunol 140:1506Google Scholar
  145. 145.
    Reference deletedGoogle Scholar
  146. 146.
    Xian-hao X, McFarlin DE (1984) Oligoclonal bands in CSF: twins with MS. Neurology 34:769Google Scholar
  147. 147.
    Farrell MA, Kaufmann JCE, Gilbert JJ, Noseworthy JH, Armstrong HA, Ebers GC (1985) Oligoclonal bands in multiple sclerosis: clinical-pathologic correlation. Neurology 35:212Google Scholar
  148. 148.
    Ross C, Hansen MB, Schyberg T, Berg K (1990) Autoantibodies to crude human leucocyte interferon (IFN), native human IFN, recombinant human IFN-alpha 2b and human IFN-gamma in healthy blood donors. Clin Exp Immunol 82:57Google Scholar
  149. 149.
    Panitch HS, Francis GS, Hooper CJ, Merigan TC, Johnson KP (1985) Serial immunological studies in multiple sclerosis patients treated systematically with human alpha interferon. Ann Neurol 18:434Google Scholar
  150. 150.
    Rice GP, Woelfel EL, Talbot PJ, Braheny SL, Sipe JC, Knobler AL, Merigan TC, Oldstone MB (1985) Immunological complications in multiple sclerosis patients receiving interferon. Ann Neurol 18:439Google Scholar
  151. 151.
    Abreu SL, Thampoe I, Kaplan P (1986) Interferon in experimental autoimmune encephalomyelitis: intraventricular administration. J Interferon Res 6:627Google Scholar
  152. 152.
    Abreu SL (1982) Suppression of experimental allergic encephalomyelitis by interferon. Immunol Commun 11:1Google Scholar
  153. 153.
    Abreu SL (1985) Interferon in experimental autoimmune encephalomyelitis (EAE): effects of exogenous interferon on the antigen-enhanced adoptive transfer of EAE. Int Arch Allergy Appl Immunol 76:302Google Scholar
  154. 154.
    Abreu SL, Tondreau J, Levine S, Sowinski R (1983) Inhibition of passive localized experimental allergic encephalomyelitis by interferon. Int Arch Allergy Apply Immunol 72:30Google Scholar
  155. 155.
    Hertz F, Deghenghi R (1985) Effect of rat andβ-human interferons on hyperacute experimental allergic encephalomyelitis in rats. Agents Actions 16:347Google Scholar
  156. 156.
    Inada T, Mims CA (1986) Infection of mice with lactic dehydrogenase virus prevents development of experimental allergic encephalomyelitis. J Neuroimmunol 11:53Google Scholar
  157. 157.
    Heremans H, Billiau A, Coutelier JP, De Somer P (1987) The inhibition of endotoxin-induced local inflammation by LDH virus or LDH virus-infected tumors is mediated by itnerferon. Proc Soc Exp Biol Med 185:6Google Scholar
  158. 158.
    Habif DV, Lipton R, Cantell K (1975) Interferon crosses blood-cerebrospinal fluid barrier in monkeys. Proc Soc Exp Biol Med 149:287Google Scholar
  159. 159.
    Noronha A, Toscas A, Jensen MA (1993) Interferonβ decreases T cell activation and interferonγ production in multiple sclerosis. J Neuroimmunol 46:145Google Scholar
  160. 160.
    Rudick RA, Carpenter CS, Cookfair DL, Tuohy VK, Ransohoff RM (1993) In vitro and in vivo inhibition of mitogen-driven T-cell activation by recombinant interferon beta. Neurology 43:2080Google Scholar
  161. 161.
    Klimpel GR, Infante AJ, Patterson J, Hess CB, Asuncion M (1990) Virus-induced interferonα/β (IFN-α/β) production by T cells and by Th1 and Th2 helper T cell clones: a study of the immunoregulatory actions of IFN- versus IFN-α/β on functions of different T cell populations. Cell Immunol 128:603Google Scholar
  162. 162.
    Zarling JM, Sosman J, Eskra L, Borden EC, Horoszewicz JS, Carter WA (1978) Enhancement of T cell cytotoxic responses by purified human fibroblast interferon. J Immunol 121:2002Google Scholar
  163. 163.
    Rosztóczy I, Siroki O, Béládi I (1986) Effects of interferons-α, -β, and -γ on human interleukin-2 production. J Interferon Res 6:581Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Barry G. W. Arnason
    • 1
  • Amit Dayal
    • 1
  • Zhi Xiang Qu
    • 1
  • Mark A. Jensen
    • 1
  • Kursad Genç
    • 1
  • Anthony T. Reder
    • 1
  1. 1.Department of Neurology and the Brain Research InstituteThe University of ChicagoChicagoUSA

Personalised recommendations