Advertisement

Springer Seminars in Immunopathology

, Volume 19, Issue 4, pp 401–415 | Cite as

Severe combined immune deficiencies due to defects of the common γ chain-JAK3 signaling pathway

  • Fabio Candotti
  • John J. O'Shea
  • Anna Villa
Article

Conclusions

The recent elucidation of the molecular basis of TB+SCID has led to significant advances in both basic and clinical immunology. The demonstration of mutation of lye and JAK3 as the pathogenetic basis for X-linked and autosomal-recessive TB+SCID, respectively, has further substantiated the importance of cytokines like IL-2, IL-4, IL-7, IL-9, and IL-15 in the development and regulation of the immune system. Moreover, it demonstrates clearly the essential role of JAK-STAT signaling pathway in controlling the immune response.

On the other hand, the identification of two of the disease genes for TB+SCID has made it possible to perform specific mutation analysis, thus allowing correct clinical diagnosis in sporadic cases of TB+SCID and, more importantly, opening the way to prenatal testing and direct assessment of carrier status. These possibilities offer obvious advantages to families during the decision making process of planning and continuing pregnancies Finally, these discoveries assist physicians to schedule and implement clinical management strategies (prenatal and postnatal BMT, gene therapy) for affected children.

Keywords

Signaling Pathway Gene Therapy Mutation Analysis Disease Gene Significant Advance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (1968) Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet II: 1364Google Scholar
  2. 2.
    Brooks EG, Schmalstieg FC, Wirt DP, Rosenblatt HM, Adkins LT, Lookingbill DP, Rudloff HE, Rakusan TA, Goldman AS (1990) A novel X-linked combined immunodeficiency disease. J Clin Invest 86: 1623Google Scholar
  3. 3.
    Brugnoni D, Notarangelo LD, Sottini A, Airò P, Pennacchio M, Mazzolari E, Signorini S, Candotti F, Villa A, Mella P, Vezzoni P, Cattaneo R, Ugazio AG, Imberti L (1998) Development of autologous, oligoclonal, poorly functioning T lymphocytes in a patient with autosomal recessive severe combined immunodeficiency due to defects of the Jak3 tyrosine kinase. Blood 91: 949Google Scholar
  4. 4.
    Buckley RH, Schiff SE, Schiff RI, Roberts JL, Markert ML, Peters W, Williams LW, Ward FE (1993) Haploidentical bone marrow stem cell transplantation in human severe combined immunodeficiency. Semin Hematol 30: 92Google Scholar
  5. 5.
    Buckley RH, Schiff RI, Schiff SE, Markert ML, Williams LW, Harville TO, Roberts JL, Puck JM (1997) Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J Pediatr 130: 378Google Scholar
  6. 6.
    Candotti F, Johnston JA, Puck JM, Sugamura K, O'Shea JJ, Blaese RM (1996) Retroviral-mediated gene correction for X-linked severe combined immunodeficiency. Blood 87: 3097Google Scholar
  7. 7.
    Candotti F, Oakes S, Johnston JA, Notarangelo LD, O'Shea JJ, Blaese RM (1996) In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J Exp Med 183: 2687Google Scholar
  8. 8.
    Candotti F, Oakes SA, Johnston JA, Giliani S, Schumacher RE, Mella P, Fiorini M, Ugazio AG, Badolato R, Notarangelo LD, Bozzi F, Macchi P, Strina D, Vezzoni P, Blaese RM, O'Shea JJ, Villa A (1997) Structural and functional basis for JAK3 deficient severe combined immunodeficiency. Blood 90:3996Google Scholar
  9. 9.
    Cao X, Shores EW, Hu-Li J, Anver MR, Kelsall BL, Russell SM, Drago J, Noguchi M, Grinberg A, Bloom ET, Paul WE, Katz SI, Love PE, Leonard WJ (1995) Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2: 223Google Scholar
  10. 10.
    Cavazzana-Calvo M, Hacein-Bay S, De Saint Basile G, De Coene F, Selz F, Le Deist F, Fischer A (1996) Role of interleukin-2 (IL-2), IL-7, and IL-15 in natural killer cell differentiation from cord blood hematopoietic progenitor cells and from gc transduced severe combined immunodeficiency X1 bone marrow cells. Blood 88: 3901Google Scholar
  11. 11.
    Chen M, Cheng A, Chen Y-Q, Hymel A, Hanson EP, Kimmel L, Minami Y, Taniguchi T, Changelian PS, O'Shea JJ (1997) The amino terminus of JAK3 is necessary and sufficient for binding to the common gamma chain and confers the ability to transmit interleukin 2-mediated signals. Proc Natl Acad Sci USA 94:6910Google Scholar
  12. 12.
    Darnell JE (1997) STATs and gene regulation. Science 277: 1630Google Scholar
  13. 13.
    De Saint Basile G, Le Deist F, Caniglia M, Lebranchu Y, Griscelli C, Fischer A (1992) Genetic study of a new X-linked recessive immunodeficiency syndrome. J Clin Invest 89: 861Google Scholar
  14. 14.
    Disanto JP, Le Deist F, Caniglia M, Markiewicz S, Lebranchu Y, Griscelli C, Fischer A, De Saint-Basile G (1993) Variant forms of X-linked severe combined immunodeficiency disease: one or many genes? Immunodeficiency 4: 253Google Scholar
  15. 15.
    Disanto JP, Dautry-Varsat A, Certain S, Fischer A, De Saint Basile G (1994) Interleukin-2 (IL-2) receptor gamma chain mutations in X-linked severe combined immunodeficiency disease result in the loss of high-affinity IL-2 receptor binding. Eur J Immunol 24:475Google Scholar
  16. 16.
    Disanto JP, Rieux-Laucat F, Dautry-Varsat A, Fischer A, de Saint Basile G (1994) Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. Proc Natl Acad Sci USA 91: 9466Google Scholar
  17. 17.
    Disanto JP, Muller W, Guy-Grand D, Fischer A, Rajewsky K (1995) Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 92: 377Google Scholar
  18. 18.
    Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921Google Scholar
  19. 19.
    Filipovich A (1996) Stem cell transplantation from unrelated donors for correction of primary immunodeficiencies. Immunol Allergy Clin 16: 377Google Scholar
  20. 20.
    Fischer A, Landais P, Friedrich W, Morgan G, Gerritsen B, Fasth A, Porta F, Griscelli C, Goldman SF, Levinsky R, Vossen J (1990) European experience of bone-marrow transplantation for severe combined immunodeficiency. Lancet 336: 850Google Scholar
  21. 21.
    Fischer A, Cavazzana-Calvo M, De Saint Basile G, DeVillartay JP, Di Santo JP, Hivroz C, Rieux-Laucat F, Le Deist F (1997) Naturally occurring primary deficiencies of the immune system. Anon Rev Immunol 15: 93Google Scholar
  22. 22.
    Flake AW, Roncarolo MG, Puck JM, Almeida-Porada G, Evans MI, Johnson MP, Abella EM, Harrison DD, Zanjani ED (1996) Treatment of X-linked severe combined immunodeficiency by in utero transplantation of paternal bone marrow [see comments]. N Engl J Med 335: 1806Google Scholar
  23. 23.
    Fugmann SD, Müller S, Taylor N, Friedrich W, Schwarz K (1997) The gamma-c receptor is not necessary for NK cell development in XSCID patients. Immunol Lett 556: 335aGoogle Scholar
  24. 24.
    Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet II: 1366Google Scholar
  25. 25.
    Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S, Namen A, Park LS, Cosman D, Anderson D (1994) Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 13:2822Google Scholar
  26. 26.
    Goldsmith MA, Lai SY, Xu W, Amaral MC, Kuczek ES, Parent LJ, Mills GB, Tarr KL, Longmore GD, Greene WC (1995) Growth signal transduction by the human interleukin-2 receptor requires cytoplasmic tyrosines of the beta chain and non-tyrosine residues of the gamma c chain. J Biol Chem 270: 21729Google Scholar
  27. 27.
    Gougeon ML, Drean G, Le Deist F, Dousseau M, Fevrier M, Diu A, Theze J, Griscelli C, Fischer A (1990) Human severe combined immunodeficiency disease: phenotypic and functional characteristics of peripheral B lymphocytes. J Immunol 145:2873Google Scholar
  28. 28.
    Hacein-Bey S, Cavazzana-Calvo M, Le Deist F, Dautry-Varsat A, Hivroz C, Rivière I, Danos O, Heard JM, Sugamura K, Fischer A, De Saint Basile G (1996) Gamma-c gene transfer into SCID X1 patients' B-cell lines restores normal high-affinity interleukin-2 receptor expression and function. Blood 87: 3108Google Scholar
  29. 29.
    Hoffman SMG, Lai KS, Tomfohrde J, Bowcock A, Gordon LA, Mohrenweiser HW (1997) JAK3 maps to human chromosome l9pl2 within a cluster of proto-oncogenes and transcription factors. Genomics 43:109Google Scholar
  30. 30.
    Hou XS, Perrimon N (1997) The Jak-STAT pathway in Drosophila. Trends Genet 13: 105Google Scholar
  31. 31.
    Johnston JA, Bacon CM, Finbloom DS, et al (1995) Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci USA 92: 8705Google Scholar
  32. 32.
    Jones AM, Clark PA, Katz F, Genet S, McMahon C, Alterman L, Cant A, Kinnon C (1997) B-cell-negative severe combined immunodeficiency associated with a common gamma chain mutation. Hum Genet 99: 677Google Scholar
  33. 33.
    Kawamura M, McVicar DW, Johnston JA, Blake TB, Chen YQ, Lal BK, Lloyd AR, Kelvin DJ, Staples JE, Ortaldo JR, O'Shea JJ (1994) Molecular cloning of L-JAK, a Janus family protein-tyrosine kinase expressed in natural killer cells and activated leukocytes. Proc Natl Acad Sci U S A 91: 6374Google Scholar
  34. 34.
    Kawata T, Shevchenko A, Fukuzawa M, Jermyn KA, Totty NF, Zhukovskaya NV, Sterling AE, Mann M, Williams JG (1997) SH2 signaling in a tower eukaryote: a STAT protein that regulates stalk cell differentiation inDictyostelium. Cell 89: 909Google Scholar
  35. 35.
    Kimura Y, Takeshita T, Kondo M, Ishii N, Nakamura M, Van Snick J, Sugamura K (1995) Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int Immunol 7: 115Google Scholar
  36. 36.
    Kondo M, Takeshita T, Ishii N, Nakamura M, Watanabe S, Arai K, Sugamura K (1993) Sharing of the interleukin-2 (IL-2) receptor gamma chain between receptors for IL-2 and IL-4. Science 262: 1874Google Scholar
  37. 37.
    Kondo M, Takeshita T, Higuchi M, Nakamura M, Sudo T, Nishikawa S, Sugamura K (1994) Functional participation of the IL-2 receptor gamma chain in IL-7 receptor complexes. Science 263:1453Google Scholar
  38. 38.
    Kondo M, Akashi K, Domen J, Sugamura K, Weissman IL (1997) Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 7: 155Google Scholar
  39. 39.
    Lai KS, Jin Y, Graham DK, Witthuhn BA, Ihle JN, Liu ET (1995) A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem 270:25028Google Scholar
  40. 40.
    Leonard WJ, Shores EW, Love PE (1995) Role of the common cytokine receptor gamma chain in cytokine signaling and lymphoid development. Immunol Rev 148:97Google Scholar
  41. 41.
    Lin JX, Migone T, Tsang M, Friedman M, Weatherbee J, Li Z, Yamauchi A, Bloom E, Mietz J, John S, Leonard WJ (1995) The role of shared receptor motifs and common STAT proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13 and IL-15. Immunity 2:331Google Scholar
  42. 42.
    Macchi P, Villa A, Giliani S, Sacco MG, Frattini A, Porta F, Ugazio AG, Johnston JA, Candotti F, O'Shea JJ, Vezzoni P, Notarangelo LD (1995) Mutations of Jak-3 gene in patients with amosomal severe combined immune deficiency (SCID). Nature 377: 65Google Scholar
  43. 43.
    Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H, Matsumoto T, Saito H, Hosoe S, Kishimoto T (1997) Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun 237:79Google Scholar
  44. 44.
    Miyazaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, Taniguchi T (1994) Functional activation of Jakl and Jak3 by selective association with IL-2 receptor subunits. Science 266: 1045Google Scholar
  45. 45.
    Morelon E, Dautry-Varsat A, Le Deist F, Hacein-Bay S, Fischer A, De Saint Basile G (1996) T-lymphocyte differentiation and proliferation in the absence of the cytoplasmic tail of the common cytokine receptor γc chain in a severe combined immune deficiency X1 patient. Blood 89:1708Google Scholar
  46. 46.
    Musso T, Johnston JA, Linnekin D, Varesio L, Rowe TK, O'Shea JJ, McVicar DW (1995) Regulation of JAK3 expression in human monocytes: phosphorylation in response to interleukins 2, 4, and 7. J Exp Med 181: 1425Google Scholar
  47. 47.
    Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A, Nishimoto N, Kajita T, Taga T, Yoshizaki K, Akira S, Kishimoto T (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924Google Scholar
  48. 48.
    Nakajima H, Shores EW, Noguchi M, Leonard WJ (1997) The common cytokine receptor gamma chain plays an essential role in regulating lymphoid homeostasis. J Exp Med 185: 189Google Scholar
  49. 49.
    Nelson BH, Lord JD, Greenberg PD (1996) A membrane-proximal region of the interleukin-2 receptor gamma c chain sufficient for Jak kinase activation and induction of proliferation in T cells. Mol Cell Biol 16: 309Google Scholar
  50. 50.
    Noguchi M, Adelstein S, Cao X, Leonard WJ (1993) Characterization of the human interleukin-2 receptor gamma chain gene. J Biol Chem 268: 13601Google Scholar
  51. 51.
    Noguchi M, Nakamura Y, Russell SM, Ziegler SF, Tsang M, Cao X, Leonard WJ (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-7 receptor. Science 262: 1877Google Scholar
  52. 52.
    Noguchi M, Yi H, Rosenblatt HM, Filipovich AH, Adelstein S, Modi WS, McBride OW, Leonard WJ (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73: 147Google Scholar
  53. 53.
    Nosaka T, Deursen JM van, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP, Doherty PC, Grosveld GC, Ihle JN (1995) Defective lymphoid development in mice lacking Jak3. Science 270: 800Google Scholar
  54. 54.
    Oakes SA, Candotti F, Johnston JA, Chen Y-Q, Ryan JJ, Taylor N, Liu X, Hennighausen L, Notarangelo LD, Paul WE, Blaese RM, O'Shea JJ (1996) Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and -independent pathways. Immunity 5:605Google Scholar
  55. 55.
    Ohbo K, Suda T, Hashiyama M, Mantani A, Ikebe M, Miyakawa K, Moriyama M, Nakamura M, Katsuki M, Takahashi K, Yamamura K, Sugamura K (1996) Modulation of hematopoiesis in mice with a truncated mutant of the interleukin-2 receptor gamma chain. Blood 87: 956Google Scholar
  56. 56.
    O'Shea JJ (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7: 1Google Scholar
  57. 57.
    Park SY, Saito K, Takahashi T. M. O., Arase H, Hirayama N, Miyake K, Nakauchi H, Shirasawa T, Saito T (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3: 771Google Scholar
  58. 58.
    Pepper AE, Buckley RH, Small TN, Puck JM (1995) Two mutational hotspots in the interleukin-2 receptor gamma chain gene causing human X-linked severe combined immunodeficiency. Am J Hum Genet 57:564Google Scholar
  59. 59.
    Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC, Park LS, Ziegler SF, Williams DE, Ware CB (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180: 1955Google Scholar
  60. 60.
    Puck JM, Deschenes SM, Porter JC, Dutra AS, Brown CJ, Willard HF, Henthorn PS (1993) The interleukin-2 receptor gamma chain maps to Xg13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum Mol Genet 2: 1099Google Scholar
  61. 61.
    Puck JM, De Saint Basile G, Schwarz K, Fugmann S, Fischer RE (1996) IL2RGbase: a database of gamma-c chain defects causing human X-SCID. Immunol Today 17:507Google Scholar
  62. 62.
    Puck JM, Pepper AE, Henthorn PS, Candotti F, Isakov J, Whitwam T, Conley ME, Fischer RE, Rosenblatt HM, Small TN, Buckley RH (1997) Mutation analysis of IL2RG in human X-linked severe combined immunodeficiency. Blood 89:1968Google Scholar
  63. 63.
    Rane SG, Reddy EP (1994) JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 9: 2415Google Scholar
  64. 64.
    Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J, Bosse A, O'Shea JJ, Johnston JA (1996) Genomic sequence, organization and chromosomal organization of human Jak3. Genomics 37: 57Google Scholar
  65. 65.
    Rosen FS, Wedgwood RJP, Eibl M, Fischer A, Aiuti F, Notarangelo LD, Kishimoto T, Resnick IB, Hammarstrom L, Seger R, Chapel H, Thompson RA, Cooper MD, Geha RS, Good RA, Waldmann TA (1997) Primary immunodeficiency diseases. Report of a WHO scientific group. Clin Exp Immunol 109: S1: 1Google Scholar
  66. 66.
    Russell SM, Keegan AD, Harada N, Nakamura Y, Noguchi M, Leland P, Friedmann MC, Miyajima A, Puri RK, Paul WE, Leonard WJ (1993) Interleukin-2 receptor gamma chain: a functional component of the interleukin-4 receptor. Science 262: 1880Google Scholar
  67. 67.
    Russell SM, Johnston JA, Noguchi M, Kawamura M, Bacon CM, Friedmann M, Berg M, McVicar DW, Witthuhn BA, Silvennoinen O, Goldman AS, Schmalsteig FC, Ihle JN, O'Shea JJ, Leonard WJ (1994) Interaction of IL-2R beta and gamma c chains with Jakl and Jak3: implications for XSCID and XCID. Science 266:1042Google Scholar
  68. 68.
    Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MI, Migone TS, Noguchi M, Markert ML, Buckley RH, O'Shea JJ, Leonard WJ (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270: 797Google Scholar
  69. 69.
    Saijo K, Park SY, Ishida Y, Arase H, Saito T (1997) Crucial role of Jak3 in negative selection of self-reactive T cells. J Exp Med 185: 351Google Scholar
  70. 70.
    Schmalstieg FC, Wirt DP, Adkins LT, Brooks EG, Stansberry SD, Swischuk LE, Goldman AS (1992) Postnatal development of T lymphocytes in a novel X-linked immunodeficiency disease. Clin Immunol Immunopathol 64:71Google Scholar
  71. 71.
    Schmalstieg FC, Leonard WJ, Noguchi M, Berg M, Rudloff HE, Denney RM, Dave SK, Brooks EG, Goldman AS (1995) Missense mutation in exon 7 of the common gamma chain gene causes a moderate form of X-linked combined immunodeficiency. J Clin Invest 95: 1169Google Scholar
  72. 72.
    Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387: 917Google Scholar
  73. 73.
    Stephan JL, Vlekova V, Le Deist F, Blanche S, Donadieu J, De Saint-Basile G, Durandy A, Griscelli C, Fischer A (1993) Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr 123: 564Google Scholar
  74. 74.
    Stephan V, Wahn V, Le Deist F, Dirksen U, Broker B, Muller-Fleckenstein I, Homeff G, Schroten H, Fischer A, De Saint Basile G (1996) Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 335: 1563Google Scholar
  75. 75.
    Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257: 379Google Scholar
  76. 76.
    Taylor N, Uribe L, Smith S, Jahn T, Kohn DB, Weinberg K (1996) Correction of interleukin-2 receptor function in X-SCID lymphoblastoid cells by retrovirally mediated transfer of the gamma-c gene. Blood 87:3103Google Scholar
  77. 77.
    Taylor N, Candotti F, Smith S, Oakes SA, Jahn T, Isakov J, Puck JM, O'Shea JJ, Weinberg K, Johnston JA (1997) Interleukin-4 signaling in B lymphocytes from patients with X-linked severe combined immunodeficiency. J Biol Chem 272:7314Google Scholar
  78. 78.
    Thomis DC, Berg LJ (1997) Peripheral expression of Jak3 is required to maintain T lymphocyte function. J Exp Med 185: 197Google Scholar
  79. 79.
    Thomis DC, Gumiak CB, Tivol E, Sharpe AH, Berg LJ (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270: 794Google Scholar
  80. 80.
    Villa A, Sironi M, Macchi P, Matteucci C, Notarangelo LD, Vezzoni P, Mamovani A (1996) Monocyte function in a severe combined immunodeficient patient with a donor splice site mutation in the JAK3 gene. Blood 88: 817Google Scholar
  81. 81.
    Von Freeden-Jeffry U, Vieira P, Lucian L, McNeil T, Burdach S, Murray R (1995) Lymphopenia in interleukin (IL)-7 gene deleted mice identifies IL-7 as a nonredundam cytokine. J Exp Med 181: 1519Google Scholar
  82. 82.
    Wengler GS, Lanfranchi A, Frusca T, Verardi R, Neva A, Brugnoni D, Giliani S, Fiorini M, Mella P, Guandalini F, Mazzolari E, Pecorelli S, Notarangelo LD, Porta F, Ugazio AG (1996) In-utero transplantation of parental CD34 haematopoietic progenitor cells in a patient with X-linked severe combined immunodeficiency (SCIDXI). Lancet 348: 1484Google Scholar
  83. 83.
    Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN (1994) Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 370: 153Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • Fabio Candotti
    • 1
  • John J. O'Shea
    • 2
  • Anna Villa
    • 3
  1. 1.Department of PediatricsUniversity of BresciaBresciaItaly
  2. 2.Lymphocyte Cell Biology Section, ARB, NIAMS, NIHBethesdaUSA
  3. 3.Institute of Advanced Biotechnologies of the National Research CouncilMilanItaly

Personalised recommendations