Advertisement

Soviet Powder Metallurgy and Metal Ceramics

, Volume 23, Issue 1, pp 76–84 | Cite as

Titanium base antifriction materials (Review)

  • I. D. Radomysel'skii
  • N. N. Manukyan
Test Methods and Properties of Powder Metallurgical Materials

Conclusions

The low antifriction properties of titanium and its alloys are caused by seizing of the rubbing surfaces as the result of adhesion of titanium, the high coefficient of friction (0.48–0.68), and the low wear resistance and thermal conductivity (8.38–16.76 W/m·K).

Surface hardening of titanium alloy parts is applicable only for light operating conditions. It does not solve the problem of the antifriction properties of titanium as a valuable metal for the parts of rubbing pairs.

Work in the area of the powder metallurgy of titanium confirms the possibility of the creation of a new class of titanium alloys with the necessary combination of antifriction properties.

Keywords

Titanium Thermal Conductivity Wear Resistance Titanium Alloy Powder Metallurgy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. E. Mazharova, A. Z. Komanovskii, B. B. Chechulin, and S. F. Vazhenin, Working of Titanium Alloys by Pressure [in Russian], Metallurgiya, Moscow (1977).Google Scholar
  2. 2.
    B. B. Chechulin, S. S. Ushakov, N. N. Razuvaeva, and V. N. Gol'darain, Titanium Alloys in Machine Building [in Russian], Mashinostroenie, Leningrad (1977).Google Scholar
  3. 3.
    I. S. Kaptyug and V. I. Syshchikov, “The influence of alloying on the friction properties of titanium,” Metalloved. Term. Obrab. Met., No. 4, 8–11 (1959).Google Scholar
  4. 4.
    P. D. Miller and I. V. Holliday, “The friction and wear of titanium. Machine building abroad,” in: Translations and Reviews of Foreign Literature [in Russian], No. 6, Mashinostroenie, Moscow (1959), pp. 10–20.Google Scholar
  5. 5.
    E. Rabinowitz, “Frictional properties of titanium and its alloys,” Met. Progr.,65, No. 2, 19–23 (1954).Google Scholar
  6. 6.
    L. I. Pugina, M. D. Sinyavskaya, and I. M. Maksimchuk, The Diffusion of Molybdenum [in Russian], Naukova Dumka, Kiev (1968).Google Scholar
  7. 7.
    I. M. Fedorchenko and L. I. Pugina, Composite Sintered Antifriction Materials [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  8. 8.
    V. N. Gol'dfain, E. A. Astakhov, A. I. Zverev, and V. P. Lukina, “An investigation of the antifriction properties of a coating of VK15 applied by a detonation method on VT5 alloy,” Poroshk. Metall., No. 1, 81–84 (1979).Google Scholar
  9. 9.
    A. G. Klabukov and A. M. Zuev, “Increasing the wear resistance of a titanium alloy by oxidation,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 3, 120–124 (1974).Google Scholar
  10. 10.
    V. I. Arkharov, “Basic directions in the development of methods for protective coatings for metals,” in: Protective Coatings on Metals [in Russian], No. 9, Naukova Dumka, Kiev (1975), pp. 3–6.Google Scholar
  11. 11.
    V. N. Eremenko, Titanium and Its Alloys [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1960).Google Scholar
  12. 12.
    V. V. Kudinov, Plasma Coatings [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    A. Khasui, Techniques of Spraying [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  14. 14.
    A. P. Semenov, Yu. P. Fed'ko, and A. I. Grigorov, Detonation Coatings and Their Use [in Russian], Nauch. -Issled. Inst. Inf. Mashinostr., Moscow (1977).Google Scholar
  15. 15.
    É. Krechmar, The Spraying of Metals, Ceramics, and Plastics [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  16. 16.
    V. I. Kostikov and Yu. A. Shesterin, Plasma Coatings [in Russian], Metallurgiya, Moscow (1978).Google Scholar
  17. 17.
    G. V. Samsonov, A. D. Verkhoturov, G. A. Bovkun, and V. S. Sychev, “Electrospark alloying of metal surfaces,” Naukova Dumka, Kiev (1976).Google Scholar
  18. 18.
    A. F. Aksenov, I. E. Polishchuk, É. A. Kul'gavyi, and A. S. Sin'kovskii, “The state and prospects of use of antifriction coatings on titanium alloys,” Trenie Iznos,3, No. 3, 421–427 (1982).Google Scholar
  19. 19.
    V. S. Ustinov, Yu. G. Olesov, V. A. Drozdenko, and L. N. Antipin, The Powder Metallurgy of Titanium [in Russian], Metallurgiya, Moscow (1981).Google Scholar
  20. 20.
    V. N. Antsiferov and Yu. G. Olesov, Powder Metallurgy: An Interuniversity Collection of Scientific Works [in Russian], No. 201, Perm Univ. (1977).Google Scholar
  21. 21.
    The Powder Metallurgy of Titanium: Scientific Works [in Russian], No. 14, Vsesoyuz. Nauch. -Issled, i Proekt. Inst. Titana, Zaporozhe (1978).Google Scholar
  22. 22.
    B. Ya. Vorob'ev, Yu. G. Olesov, and V. A. Drozdenko, The Production of Parts from Titanium Powders [in Russian], Tekhnika, Kiev (1976).Google Scholar
  23. 23.
    I. N. Frantsevich, D. M. Karpinos, Yu. V. Naidich, et al., Inventor's Certificate 412273, “A titanium-base metal-ceramic constructional material,” Byull. Izobret., No. 3 (1974).Google Scholar
  24. 24.
    I. N. Frantsevich, D. M. Karpinos, L. I. Tuchinskii, et al., “Sintered titanium base antifriction composites,” Poroshk. Metall., No. 1, 6–65 (1978).Google Scholar
  25. 25.
    B. I. Kostetskii, M. É. Natanson, and L. I. Bershadskii, Mechanicochemical Processes in Boundary Friction [in Russian], Nauka, Moscow (1972).Google Scholar
  26. 26.
    B. A. Kalachev, The Metallurgy and Heat Treatment of Nonferrous Metals and Alloys [in Russian], Metallurgiya, Moscow (1972).Google Scholar
  27. 27.
    B. I. Kostetskii, Friction, Lubrication, and Wear in Machines [in Russian], Tekhnika, Kiev (1970).Google Scholar
  28. 28.
    G. P. Luchinskii, The Chemistry of Titanium [in Russian], Khimiya, Moscow (1971).Google Scholar
  29. 29.
    F. Frehn, Patent 2046614 (Federal Republic of Germany). Gesinterte Titanlegierund, Published July 12, 1978.Google Scholar
  30. 30.
    V. G. Enevich, D. M. Karpinos, V. V. Polotai, et al., “Titanium-base sintered antifriction materials,” Proshk. Metall., No. 5, 87–91 (1979).Google Scholar
  31. 31.
    I. D. Radomysel'skii, S. V. Titarenko, and V. V. Polotai, “Increasing the wear resistance of titanium by the addition of hard compounds,” in: Sintered Constructional Materials [in Russian], Inst. Probl. Materialoved. Akad. Nauk Ukr. SSR, Kiev (1976), pp. 113–117.Google Scholar
  32. 32.
    A. M. Petrova, I. D. Radomysel'skii, S. V. Titarenko, and M. L. Gorb, “The structure and properties of a sintered titanium material containing refractory inclusions with various methods of adding them to the charge,” ibid.in:, 129–133.Google Scholar
  33. 33.
    I. D. Radomysel'skii, S. V. Titarenko, A. M. Petrov, and V. V. Polotai, “A study of the friction and wear of sintered titanium materials,” Poroshk. Metall., No. 6, 73–78 (1977).Google Scholar
  34. 34.
    Ya. A. Gluskin, V. M. Valakina, V. L. Memelov, and A. N. Moskvichev, “An investigation of a titanium-base metal-ceramic antifriction material,” Tr. Vsesoyuz. Nauch. -Issled. Inst. Elekromekh. Elektrotekh. Mater. Izd.,56, 29–33 (1978).Google Scholar
  35. 35.
    Ya. A. Gluskin and V. L. Memelov, “Features of the friction and wear of sintered materials with a working layer of solid lubricant,” in: Problems of Friction and Wear [in Russian], Tekhnika, Kiev (1976), pp. 79–84.Google Scholar
  36. 36.
    V. A. Belyi (ed.), Metal-Polymer Materials and Parts [in Russian], Khimiya, Moscow (1979).Google Scholar
  37. 37.
    P. S. Pautysnkii (ed.), Polymers in Machines. Proceedings of the Third All-Union Scientific and Technical Conference on the Use of Polymer Materials [in Russian], Moscow (1968).Google Scholar
  38. 38.
    I. V. Kragel'skii, Friction and Wear [in Russian], Mashinostroenie, Moscow (1968).Google Scholar
  39. 39.
    R. F. Bunshah, Precis. Met. Works,14, No. 6, 42–46 (1956).Google Scholar
  40. 40.
    M. M. Khrushchov (ed.), The Use of Plastic Base Materials for Sliding Bearings and Seals in Machines: A Collection of Articles [in Russian], Nauka, Moscow (1968).Google Scholar
  41. 41.
    É. M. Natanson and Z. R. Ul'berg, Colloidal Metals and Metal-Polymers [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  42. 42.
    M. T. Bryk, Z. T. Il'ina, V. I. Chernova, et al., Dispersed Titanium-Base Composite Metal-Polymer Materials [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  43. 43.
    V. I. Chernova and R. I. Ognev, “Chemically resistant and electrically conducting coatings containing titanium powders,” Lakrokras. Pokryt. Primen., No. 1, 34–35 (1977).Google Scholar
  44. 44.
    A. P. Semenov and Yu. É. Savinskii, Metal-Fluoroplastic Bearings [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  45. 45.
    A. L. Rabinovich, Introduction to the Mechanics of Reinforced Polymers [in Russian], Nauka, Moscow (1970).Google Scholar
  46. 46.
    E. B. Trostyanskaya (ed.), Constructional Thermosoftening Plastics [in Russian], Khimiya, Moscow (1975).Google Scholar
  47. 47.
    A. Blainey, “Fluon-impregnated self-lubricating bearing materials,” in: Symposium on Powder Metallurgy, 1954, Special Report No. 58, The Iron and Steel Inst. (1956), pp. 222–230.Google Scholar
  48. 48.
    L. V. Chereshkevich, D. D. Chegodaev, N. E. Yazvina, and S. V. Belen'kaya, Fluoroplastic Bearings Operating without Lubricant [in Russian], Leningrad. Dom. Nauch. Tekh. Prop., Leningrad (1959).Google Scholar
  49. 49.
    A. P. Semenov and V. V. Pozdnyakov, Inventor's Certificate No. 158824, “A method of impregnating porous materials such as metal-ceramics with a polymer material,” Byull. Izobret., No. 22 (1963).Google Scholar
  50. 50.
    N. L. Letkov, A. K. D'yachkov, A. A. Kokorev and A. A. Grokhovskii, Inventors Certificate No. 144015, “A method of impregnating porous masses with a filler,” Byull. Izobret., No. 1 (1979).Google Scholar
  51. 51.
    B. D. Voronkov, Dry Friction Bearings [in Russian], Nauka, Leningrad (1979).Google Scholar
  52. 52.
    A. P. Semenov, The Seizing of Metals [in Russian], Mashgiz, Moscow (1958).Google Scholar
  53. 53.
    A. P. Semenov, “The seizing of metals and methods of preventing it in rubbing,” Trenie Iznos,1, No. 2, 236–246 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • I. D. Radomysel'skii
    • 1
    • 2
  • N. N. Manukyan
    • 1
    • 2
  1. 1.Institute of Problems of Material ScienceAcademy of Sciences of the Ukrainian SSRUkraine
  2. 2.Erevan Polytechnic InstituteUSSR

Personalised recommendations