Archive of Applied Mechanics

, Volume 64, Issue 1, pp 20–31 | Cite as

Traction on a conductor and Helmholtz tensor

  • A. Barletta
  • E. Zanchini


A rigorous deduction of the force per unit area which acts on any electric conductor surrounded by a linear dielectric fluid at rest is presented. Moreover, it is proved that the Helmholtz stress tensor is one of the infinitely many second-order tensors which yield the stresses acting on the surface of a conductor immersed in the fluid.


Neural Network Electric Conductor Complex System Information Theory Stress Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Die auf einen Leiter wirkenden Kräfte und der Helmholtz-Tensor


Eine strenge Herleitung der Kraft pro Einheisfläche, die auf einen elektrischen Leiter wirkt, der von einer linear dielektrischen Flüssigkeit im Ruhezustand umgeben wird, wird gegeben. Überdies wird gezeigt, daß der Helmholtz-Spannungstensor einer der unendlich vielen Tensoren zweiter Ordnung ist, die Angaben über die Spannungen liefern, die auf die Oberfläche eines von der Flüssigkeit umgebenen Leiters wirken.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landau, L. D.; Lifshitz, E. M.: Electrodynamics of continuous media. Oxford: Pergamon Press 1960Google Scholar
  2. 2.
    Malvern, L. E.: Introduction to the mechanics of a continuous medium. Englewood Cliffs: Prentice-Hall 1969Google Scholar
  3. 3.
    Fung, Y. C.: Foundations of solid mechanics. Englewood Cliffs: Prentice-Hall 1965Google Scholar
  4. 4.
    Ziegler, H.: An introduction to thermomechanics. Amsterdam: North Holland 1977Google Scholar
  5. 5.
    Liu, I-Shih; Müller, I.: On the thermodynamics and thermostatics of fluids in electromagnetic fields. Arch. Rational Mech. Anal. 46 (1972) 149–176Google Scholar
  6. 6.
    Müller, I.: Thermodynamics. Boston: Pitman 1985Google Scholar
  7. 7.
    Maugin, G. A.: On the covariant equations of the relativistic electrodynamics of continua, II. Fluids. J. Math. Phys. 19 (1978) 1206–1211Google Scholar
  8. 8.
    Eringen, A. C.; Maugin, G. A.: Electrodynamics of continua. New York: Springer 1990Google Scholar
  9. 9.
    Stratton, J. A.: Electromagnetic theory. New York: McGraw-Hill 1941Google Scholar
  10. 10.
    Gradshteyn, I. S.; Ryzhik, I. M.: Table of integrals, series, and products. New York: Academic Press 1965Google Scholar
  11. 11.
    Smith, G. F.; Rivlin, R. S.: The anisotropic tensors. Quart. Appl. Math. 15 (1957) 308–314Google Scholar
  12. 12.
    Brevik, I.: Experiments in phenomenological electrodynamics and the electromagnetic energy-momentum tensor. Phys. Rep. 52 (1979) 133–201Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. Barletta
    • 1
  • E. Zanchini
    • 1
  1. 1.Istituto di Fisica Tecnica, Facoltà di IngegneriaUniversità di BolognaBolognaItaly

Personalised recommendations