Soviet Powder Metallurgy and Metal Ceramics

, Volume 23, Issue 10, pp 812–815 | Cite as

Porosity determination of thin fibrous-material sheets according to the optical transmission coefficient

  • A. G. Kostornov
  • O. V. Kirichenko
  • S. P. Sakhno
  • G. S. Tymchik
Test Methods and Properties of Powder Metallurgical Materials
  • 16 Downloads

Conclusions

A statistical model of a porous fibrous material is presented which describes, within 6% error at θ ≥ 0.7, the porosity θ and the optical transmission coefficient T of a sheet fibrous material as a function of the geometric fiber sizes: i.e., diameter d, lengthl, sheet thickness h, and average density λ, of the geometric fiber centers. A functional dependence f = (h, T) was established which allowed the porosity of thin fibrous material sheets to be determined by measurement of the optical transmission coefficient.

Keywords

Porosity Statistical Model Average Density Optical Transmission Transmission Coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Kostornov, Permeable Metallic Fibrous Materials [in Russian], Tekhnika, Kiev (1983).Google Scholar
  2. 2.
    A. G. Kostornov, O. V. Kirichenko, and N. S. Gyzhva, “Heat treatment of metal-filled cellulose fibers and their strength properties,” Porosk. Metall., No. 12, 26–30 (1981).Google Scholar
  3. 3.
    J. Goodman, Introduction to Fourier Optics, McGraw-Hill (968).Google Scholar
  4. 4.
    L. M. Soroko, Fundamentals of Coherent Optics and Holography [in Russian], Nauks, Moscow (1971).Google Scholar
  5. 5.
    S. Karlin, Fundamentals of the Theory of Random Processes [in Russian], Mir, Moscow (1971).Google Scholar
  6. 6.
    I. A. Bol'shakov and V. S. Rakoshits, Applied Theory of Random Fluxes [in Russian], Sov. Radio, Moscow (1978).Google Scholar
  7. 7.
    E. S. Venttsel' and L. A. Ovcharov, Applied Problems in the Probability Theory [in Russian], Radio i Svyaz', Moscow (1983).Google Scholar
  8. 8.
    Yu. E. Abakshin, L. G. Kovalenko, and R. P. Filimonov, “Description of the spatial pulse field of probability interferences by a composite process model,” Avtometriya, No. 6, 3–8 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • A. G. Kostornov
    • 1
  • O. V. Kirichenko
    • 1
  • S. P. Sakhno
    • 1
  • G. S. Tymchik
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations