Soviet Powder Metallurgy and Metal Ceramics

, Volume 24, Issue 8, pp 660–663 | Cite as

Production of superconducting materials by powder metallurgical method (review)

  • G. G. Gnesin
  • A. A. Flis
Test Methods and Properties of Powder Metallurgical Materials


Metallurgical Method Powder Metallurgical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. M. Dmitrenko, In the World of Superconductivity [in Russian], Naukova Dumka, Kiev (1981).Google Scholar
  2. 2.
    R. Shmidt (ed.). Superconducting Compound Niobium -Tin [in Russianl], Metallurgiya, Moscow (1970).Google Scholar
  3. 3.
    V. M. Pan, Yu. I. Beletskii, V. I. Latysheva, et al., “New deforming superconducting compounds with current conductivity in strong magnetic fields,” in: Questions of Cryoelectronics and Low Temperature Experimentation [in Russian], Naukova Dumka, Kiev (1976), pp. 3–6.Google Scholar
  4. 4.
    N. Yu. Rozin, E. M. Savitskii, M. I. Bychkova, and O. I. Bodak, “Structure and superconducting properties of the alloy system Nb - Cu-Ge,” in: Physicochemical Analysis of Superconducting Alloys [in Russian], Nauka, Moscow (1979), pp. 34–37.Google Scholar
  5. 5.
    R. G. Sharma, “Development of industrial superconductors,” J. Sci. Res.,42, No. 2, 64–75 (1983).Google Scholar
  6. 6.
    K. Techikawa, “Recent developments in filamentary compound superconductors,” in: Adv. Cryog. Eng. Mater, Proc. 4th Int. Cryog. Mater Conf., San Diego, Calif., August 10–14, 1981, New York-London (1982), pp. 20–40.Google Scholar
  7. 7.
    R. Roberge, H. Lehuy, and S. Foner, “Ultrafine fiber in situ Cu-Nb-Sn produced by high temperature gradient solidification,” in: Appl. Superconduct. Conf., Knoxville, Tenn., Nov. 30th–Dec. 2rd, 1982, Knoxville (1982), Pt. 1, pp. 560–562.Google Scholar
  8. 8.
    J. D. Verhoeven, E. D. Gibson, J. E. Ostenson, and D. K. Finnemore, “In situ: on the optimization of in situ Nb3Sn-Cu wire,” in: Adv. Cryog. Eng. Mater., Proc. 4th Int. Cryog, Mater. Conf., San Diego, Calif. Aug. 10–14th, 1981, New York-London (1982), pp. 501–510.Google Scholar
  9. 9.
    J. D. Verhoeven, “Insitu composites prepared by solidification and mechanical techniques,” in: “In situ” Compos., Proc. Mater. Res. Soc. Ann. Meet., Boston, Mass., Nov., 1981, N.Y. (1982), pp. 267–276.Google Scholar
  10. 10.
    D. K. Finnemore, J. D. Verhoeven, E. D. Gibson, and J. E. Ostenson, “Preparation and properties of in situ prepared filamentary Nb3Sn-Cu superconducting wire,” in: Filamentary A15 Superconductors, Plenum Press, New York-London (1980), pp. 259–270.Google Scholar
  11. 11.
    V. I. Trefilov, “Powder metallurgy and its scientific and technical progress,” Porosh. Metall., No. 1, 3–13 (1982).Google Scholar
  12. 12.
    V. S. Rakovskii, “State of powder metallurgy and basic tasks for its development,” Powder Metall., Proc. 4th All-Union Conf. on the Problems of Powder Metallurgy, Yaroslavl' (1956), pp. 3–8.Google Scholar
  13. 13.
    J. Kunsler, E. Buechler, and F. Hsu, “Superconductivity in Nb3Sn at high current density in magnetic field of 88 kG,” Phys. Rev. Lett.,6, 89–92 (1961).Google Scholar
  14. 14.
    R. Fluekiger, S. Foner, E. Meniff, and B. Schwartz, “High critical currents in cold powder metallurgy processed superconducting Cu-Nb3Sn composites,” Appl. Phys. Lett.,34, No. 2, 763–769 (1979).Google Scholar
  15. 15.
    R. Fluekiger, S. Foner, E. Neniff, et al., “Superconducting Cu-Nb3Sn composites produced by cold extrusion of fine powders,” IEEE Trans. Magn.,15, No. 7, 689–693 (1979).Google Scholar
  16. 16.
    R. Borman, L. Shultz, and H. Freyhardt, “Superconducting properties of powder metallurgically produced Cu-Nb3Sn composite wires,” Appl. Phys. Lett.,32, No. 2, 79–95 (1978).Google Scholar
  17. 17.
    L. Schultz and R. Borman, “Superconducting in filamentary Cu-Nb composites produced by powder metallurgy,” J. Appl. Phys.,50, No. 4, 418–422 (1979).Google Scholar
  18. 18.
    R. Roberge and S. Foner, “In situ and powder multifilamentary superconductors,” in: Filamentary A15 Superconductors, Plenum Press, New York-London (1980), pp. 241–257.Google Scholar
  19. 19.
    C. Thieme, H. Zhang, I. Atubo, et al., “Scaleup of powder metallurgy processed Nb-Al multifilamentary wire,” IEEE Trans. Magn.,19, No. 3, 567–569 (1983).Google Scholar
  20. 20.
    Japanese Patent 57-171629, Manufacturing of wire with superconducting properties, Mitsubishi Denku K. K., Published October 29, 1982.Google Scholar
  21. 21.
    “In situ and powder multifilamentary superconductors,” in: Filamentary Al5 Superconductors, Plenum Press, New York-London (1980), pp. 241–257.Google Scholar
  22. 22.
    J. Otubo, S. Pourrahimi, and C. L. H. Thieme, “Submicron filament multistrand powder metallurgy precessed Cu-Nb-Sr wire,” IEEE Trans. Magn.,19, No. 3, 764–768 (1983).Google Scholar
  23. 23.
    G. Hong and G. Holthuis, “Development studies on powder processed Nb3Al superconducting wire,” in: Adv. Cryog. Eng. Mater., Proc. 4th Int. Cryog. Mater. Conf., San Diego, Calif., Aug. 10–14, 1981, N. Y., L. (1982), pp. 483–493.Google Scholar
  24. 24.
    A. A. Galkn, V. P. Buryak, and N. I. Matrosov, “The properties of multifilamentary wires on Nb3Sn base prepared by the hydroextrusion method,” ibid., pp. 445–451.Google Scholar
  25. 25.
    H. King and D. Penfold, “Low temperature structural transformations in powdered samples of Nb3Sn,” ibid., pp. 371-378.Google Scholar
  26. 26.
    R. Borman, L. Schultz, H. Freyhardt, and B. Mordike, “Pulvermetallurgische Herstellung von Nb3Sn Verbundsupralutern,” Z. Metal.,70, No. 4, 467 (1979).Google Scholar
  27. 27.
    M. Hong, G. Hull, and G. Holthuis, “Superconducting properties of a liquid filtration Nb-Nb3Sn composite formed during a low temperature reaction,” Appl. Phys. Lett.,42, No. 7, 621–623 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • G. G. Gnesin
    • 1
  • A. A. Flis
    • 1
  1. 1.Institute of Materials Science ProblemsAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations