Skip to main content
Log in

Experimental verification of plasticity hypotheses for porous solids

  • Theory and Technology of the Component Formation Process
  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

Conclusions

The volume strains of a sintered porous solid depend on the type of stressed state, loading history, and form of the deviatorμ σ and are functions of two invariants-the first invariant of the stress tensor I and the second invariant of the stress deviator I'. Good qualitative descriptions of these volume strains are provided by all the models examined in this paper. In quantitative assessments of volume changes preference should be given to the Martynova-Shtern model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. R. J. Green, “Theory of plasticity of porous solids,” in: Mechanics [Russian translation], Vol. 4 (1973), pp. 109–120.

    Google Scholar 

  2. M. Oyane, S. Shima, and V. Kono, “Theory of plasticity for porous metals,” Bull. ISME,16, No. 99, 1254–1262 (1973).

    Google Scholar 

  3. H. A. Kuhn and C. L. Downey, “Deformation characteristics and plasticity theory of sintered powder materials,” Int. J. Powder Metall.,7, No. 1, 15–25 (1971).

    Google Scholar 

  4. G. L. Petrosyan, “Theory of plasticity of porous solids,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 5, 10–13 (1977).

    Google Scholar 

  5. A. Yu. Smyslov, “Theory of plasticity of porous media,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 4, 107–110 (1980).

    Google Scholar 

  6. A. M. Laptev, “Densification of porous isotropic materials under plane deformation conditions,” Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 2, 158–162 (1978).

    Google Scholar 

  7. I. F. Martynova and M. B. Shtern, “An equation for the plasticity of a porous solid allowing for true strains of the matrix material,” Poroshk. Metall., No. 1, 23–29 (1978).

    Google Scholar 

  8. V. Z. Midukov, “An investigation of the plastic deformation behavior of materials exhibiting irreversible volume compressibility,” Author's Abstract of Candidate's Dissertation, Tomsk (1975).

  9. O. V. Roman, E. A. Doroshkevich, L. D. Velyuga, et al., “Use of equations of the theory of plasticity working of P/M materials,” Poroshk. Metall., No. 6, 15–21 (1980).

    Google Scholar 

  10. V. V. Skorokhod and I. F. Martynova, “Irreversible deformation of a sintered porous body of work-hardening plastic metal,” Poroshk. Metall., No. 4, 70–74 (1977).

    Google Scholar 

  11. G. A. Smirnov-Alyaev, Resistance of Materials to Plastic Deformation [in Russian], Mashinostroenie, Leningrad (1978).

    Google Scholar 

  12. V. L. Kolmogorov, A. A. Bogatov, B. A. Migachev, et al., Plasticity and Fracture [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  13. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in a Complex Stressed State [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  14. G. S. Pisarenko, V. T. Troshchenko, and A. Ya. Krasovskii, “Study of the mechanical properties of porous iron in tension and torsion,” Poroshk. Metall., No. 6, 42–48 (1965).

    Google Scholar 

  15. Yu. G. Vazhentsev and L. M. Sedokov, “Apparatus for testing materials under hydrostatic pressure,” Probl. Prochn., No. 3, 120–121 (1977).

    Google Scholar 

  16. V. D. Rud', “Device for testing sintered materials under hydrostatic pressure conditions,” Zavod. Lab.,44, No. 12, 1529–1532 (1978).

    Google Scholar 

  17. Yu. G. Vazhentsev, V. Z. Midukov, and L. M. Sedokov, “Principles of a method of investigating the mechanical properties of materials in a triaxial stressed state,” in: Strength of Materials and Machine Elements in a Complex Stressed State [in Russian], Naukova Dumka, Kiev (1978), pp. 41–51.

    Google Scholar 

  18. S. S. Vyalov, Rheological Principles of Soil Mechanics [in Russian], Vysshaya Shkola, Moscow (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 1(229), pp. 14–20, January, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rud', V.D., Midukov, V.Z. Experimental verification of plasticity hypotheses for porous solids. Powder Metall Met Ceram 21, 12–18 (1982). https://doi.org/10.1007/BF00791717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00791717

Keywords

Navigation