Soviet Powder Metallurgy and Metal Ceramics

, Volume 20, Issue 8, pp 560–563 | Cite as

Structure and properties of fused single-crystal titanium carbide

  • V. S. Sinel'nikova
  • T. I. Shtukaturova
  • L. V. Strashinskaya
  • T. I. Shaposhnikova
  • G. S. Burkhanov
  • V. A. Kuz'mishchev
Powder Metallurgical Materials, Parts, and Coatings
  • 33 Downloads

Conclusions

An investigation was carried out into the conditions of melting of titanium carbide in an arc-plasma jet. A study of the microstructure of fused single-crystal titanium carbide revealed the presence of lamellar precipitated inclusions of free carbon, whose shape and size varied depending on the conditions of melting and composition of the starting carbide. Measurements were made of the microhardness of titanium carbide single crystals on the (100) plane. The perfection of the structure of titanium carbide single crystals was studied by x-ray diffraction and electron microscopy.

Keywords

Microstructure Microscopy Electron Microscopy Titanium Carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Sinel'nikova and V. N. Gurin, “Methods of preparation and properties of single crystals of transition metal carbides,” in: Carbides and Their Alloys [in Russian], Naukova Dumka, Kiev (1976), pp. 9–15.Google Scholar
  2. 2.
    F. W. Vahldick, “The microstructure of single-crystal titanium carbide,” J. Less-Common Met.,12, No. 6, 429–440 (1967).Google Scholar
  3. 3.
    S. Williams, “Mondrian precipitation patterns in single crystals of titanium carbide,” J. Appl. Phys.,32, No. 6, 552–554 (1961).Google Scholar
  4. 4.
    P. S. Kislyi, L. S. Golubyak, and O. V. Zaverukha, “Effect of annealing on the structure and properties of fused titanium carbide,” Poroshk. Metall., No. 10, 78–82 (1970).Google Scholar
  5. 5.
    S. Williams and R. D. Schaal, “Elastic deformation, plastic flow and dislocation in single crystals of titanium carbide,” J. Appl. Phys.,33, No. 3, 955–962 (1962).Google Scholar
  6. 6.
    Y. Kumashiro, A. Iton, and S. Misawa, “TiC single crystals prepared by the radio frequency floating zone process,” J. Less-Common Met.,32, 21–37 (1973).Google Scholar
  7. 7.
    E. M. Savitskii and G. S. Burkhanov, Single Crystals of Refractory and Rare Metals and Alloys [in Russian], Nauka, Moscow (1972).Google Scholar
  8. 8.
    N. A. Toropov and L. N. Bulgak, Crystallography and Mineralogy [in Russian], Leningrad (1972).Google Scholar
  9. 9.
    J. R. Low, Atomic Mechanism of Fracture [Russian translation], Metallurgiya, Moscow (1963).Google Scholar
  10. 10.
    D. Hall, “Twinning and crack initiation in metals with the bcc lattice,” in: Fracture of Solids [Russian translation], Metallurgiya, Moscow (1967), pp. 488–498.Google Scholar
  11. 11.
    J.-L. Chermant, P. Delavignette, and A. Deschanveres, “Etude des bandes de precipitation dans le carbure de titane sous stoechiometrique,” J. Less-Common Met.,21, No. 2, 89–101 (1970).Google Scholar
  12. 12.
    V. V. Zholud', E. É. Zasimchuk, V. S. Kravchenko, and E. A. Maksimenko, “Use of x-ray diffraction topography in the study of strained structures in single crystals,” Ukr. Fiz. Zh.,14, No. 6, 904–909 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. S. Sinel'nikova
    • 1
  • T. I. Shtukaturova
    • 1
  • L. V. Strashinskaya
    • 1
  • T. I. Shaposhnikova
    • 1
  • G. S. Burkhanov
    • 1
  • V. A. Kuz'mishchev
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUSSR

Personalised recommendations