Skip to main content
Log in

Oxidation of titanium carbide at various oxygen pressures

  • Published:
Soviet Powder Metallurgy and Metal Ceramics Aims and scope

Conclusions

  1. 1.

    A study was made of the oxidation of titanium carbide in an oxygen atmosphere at pressures of 10−5, 10−1, 10, and 150 mm Hg in the temperature range 500–1000°C.

  2. 2.

    As a result of x-ray diffraction, metallographic, and electron microscopical investigations it has been established that the implantation of oxygen in the carbide lattice is accompanied by the precipitation of carbon and metallic titanium. The amount of metallic titanium precipitated grows with rise in temperature and oxygen pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. R. F. Voitovich and É. A. Pugach, “High-temperature oxidation of titanium carbide,” Poroshk. Metall., No. 2, 63–68 (1972).

    Google Scholar 

  2. R. F. Voitovich, “An investigation into the high-temperature oxidation of alloys of transition metal and their refractory compounds,” Doctoral Dissertation, Kiev (1975).

  3. R. F. Voitovich and É. A. Pugach, “Some features of the oxidation behavior of Groups IV–VI metal carbides,” in: Carbides and Their Alloys [in Russian], Naukova Dumka, Kiev (1976), pp. 233–234.

    Google Scholar 

  4. G. D. Bogomolov, S. I. Alyamovskii, et al., “Some structural characteristics of cubic titanium oxycarbide,” Izd. Akad. Nauk SSSR, Neorg. Mater.,6, No. 8, 1405–1408 (1970).

    Google Scholar 

  5. S. I. Alyamovskii, E. N. Shchetnikov, et al., “Completeness of the lattices of titanium and vanadium oxycarbides and oxynitrides,” Izd. Akad. Nauk SSSR, Neorg. Mater.,5, No. 7, 1210–1214 (1969).

    Google Scholar 

  6. L. Kh. Pivovarov, E. Ya. Vrzhets, et al., “Vacant points in the TiC—TiO crystal lattice,” Zh. Neorg. Khim.,12, 1743–1750 (1967).

    Google Scholar 

  7. S. I. Alyamovskii, Yu. G. Zainulin, et al., “Effect of composition on the completeness of the elementary cells of cubic titanium and vanadium oxycarbides,” Zh. Neorg. Khim.,15, No. 12, 3171–3177 (1970).

    Google Scholar 

  8. V. A. Zhilyaev, Yu. G. Zainulin, et al., “High-temperature oxidation of zirconium and hafnium oxycarbides, oxynitrides, and oxycarbonitrides,” Poroshk. Metall., No. 8, 38–43 (1972).

    Google Scholar 

  9. V. A. Zhilyaev, V. D. Lyubimov, and G. P. Shveikin, “Mechanism of the phase transformations occurring during the oxidation of TiC in air,” Izd. Akad. Nauk SSSR, Neorg. Mater.,10, 47–52 (1974).

    Google Scholar 

  10. H. Bilz, “Über Elektronenzustände von Hartstoffen mit Natriumchloridstruktur,” Z. Phys.,153, 338–358 (1953).

    Google Scholar 

  11. S. P. Denker, “Relation of bonding and electron band structure to the creation of lattice vacancies in TiO,” J. Phys. Chem. Solids,25, 1397–1405 (1964).

    Google Scholar 

  12. P. V. Gel'd and V. A. Tskhai, “Mean densities of valence electrons in FeOx, YOx, and TiOx,” Zh. Struk. Khim.,4, 235–244 (1963).

    Google Scholar 

  13. G. F. Mocharnyuk, “Structural characteristics of cuprous oxide and some complex semiconductor systems,“Candidate's Dissertation, Lvov (1963).

  14. A. L. Lasker, Indian J. Phys.,36, No. 7, 359–361 (1962).

    Google Scholar 

  15. N. Cabrera, “Development of etch pits and oxidation centers on dislocations,” in: Elementary Crystal Growth Processes [Russian translation], IIL, Moscow (1959), pp. 166–174.

    Google Scholar 

  16. J. P. Hirth, “On dislocation interactions in the fcc lattice,” J. Appl. Phys.,32, No. 4, 700–706 (1961).

    Google Scholar 

  17. F. W. Young and A. G. Gwatmey, “Development of facets, spirals, and etch pits on copper crystals by heating to high temperatures in high vacua,” J. Appl. Phys.,31, No. 2, 225–230 (1960).

    Google Scholar 

  18. F. F. Lavrent'ev, L. M. Soifer, and V. I. Startsev, “Thermal etching and annealing of twin interlayers in antimony crystals,” Kristallografiya,5, No. 3, 472–475 (1960).

    Google Scholar 

  19. A. I. Andrievskii and G. F. Mocharnyuk, “Bringing out dislocations on cleavage planes in cuprous oxide,” Kristallografiya,8, No. 5, 793–795 (1963).

    Google Scholar 

  20. N. V. Ageev, V. A. Reznichenko, et al., “Lower titanium oxides,” in: Titanium and Its Alloys [in Russian], Vol. 11, Izd. Akad. Nauk SSSR, Moscow (1959), pp. 64–72.

    Google Scholar 

  21. N. E. Filonenko, V. N. Kudryavtsev, and I. V. Lavrov, “Titanium oxides in the TiO2-Ti2O3 range,” Dokl. Akad. Nauk SSSR,86, No. 3, 561–564 (1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Poroshkovaya Metallurgiya, No. 3(183), pp. 55–61, March, 1978.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voitovich, R.F., Golovko, É.I. Oxidation of titanium carbide at various oxygen pressures. Powder Metall Met Ceram 17, 211–216 (1978). https://doi.org/10.1007/BF00791431

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00791431

Keywords

Navigation