Soviet Powder Metallurgy and Metal Ceramics

, Volume 13, Issue 3, pp 232–235 | Cite as

Oxidation of tungsten disilicide in oxygen

  • G. V. Samsonov
  • V. A. Lavrenko
  • L. A. Glebov
Test Methods and Properties of Materials
  • 62 Downloads

Conclusions

  1. 1.

    Tungsten disilicide possesses comparatively high resistance to oxidation by oxygen over the temparature range 700–1200‡C. Its oxidation resistance is less than that of MoSi2 but substantially exceeds that of W2B5.

     
  2. 2.

    The kinetic curves of high-temperature oxidation of WSi2 have undulations due to cracking and subsequent self-healing of scale.

     
  3. 3.

    In spite of the complex character of the reaction of oxidation of WSi2 it may be assumed that to an approximation the oxidation rate of the silicide at all the temperatures investigated obeys a parabolic law.

     
  4. 4.

    The oxidation rate of WSi2 is virtually independent of oxygen pressure (in the range 1–740 torr) during the first 90 minutes' exposure, and it is only at longer process times that some differences become evident.

     
  5. 5.

    It was found that at temperatures of up to 900‡C the scale on WSi2 consists of W3O, WO3, and SiO2, while at higher temperatures it contains tungsten silicate and lower tungsten oxides as well as the above-mentioned phases.

     

Keywords

Oxidation Oxygen SiO2 Silicate Tungsten 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    R. Kieffer, F. Benesovsky, and E. Gallistl, Z. Metallk.,43, 284 (1952).Google Scholar
  2. 2.
    V. E. Ivanov et al., Izv. Akad. Nauk SSSR, Neorgan. Mat.,1, 1360 (1965).Google Scholar
  3. 3.
    A. N. Efimenko et al., Fiz. Metal, i Metalloved.,16, 931 (1963).Google Scholar
  4. 4.
    G. V. Samsonov, Silicides and Their Technical Applications [in Russian], Izd. Akad. Nauk USSR, Kiev (1959), p. 94.Google Scholar
  5. 5.
    L. A. Glebov, V. A. Lavrenko, and V. M. Timoshenko, Zh. Fiz. Khim.,46, 2138 (1972).Google Scholar
  6. 6.
    R. Kieffer and E. Cerwenka, Z. Metallk.,43, 101 (1952).Google Scholar
  7. 7.
    E. Scheil, Z. Metallk.,29, 209 (1937).Google Scholar
  8. 8.
    E. A. Gulbransen and K. F. Andrew, J. Electrochem. Soc.,107, 619 (1960).Google Scholar
  9. 9.
    G. A. Meerson, Zh. Russk. Fiz.-Khim. Obshchestva,60 (1928).Google Scholar
  10. 10.
    V. P. Elyutin, Yu. A. Pavlov, et al., Izv. Vysshikh Uchebn. Zavedenii, Chernaya Met.,7, 12 (1961).Google Scholar
  11. 11.
    R. F. Voitovich, Refractory Compounds: Thermodynamic Characteristics [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  12. 12.
    R. P. Ozerov, Usp. Khim.,24, 951 (1955).Google Scholar
  13. 13.
    G. HÄgg and N. Schönberg, Acta Cryst.,7, 351 (1954).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • G. V. Samsonov
    • 1
  • V. A. Lavrenko
    • 1
  • L. A. Glebov
    • 1
  1. 1.Institute of Materials ScienceAcademy of Sciences of the Ukrainian SSRUkraine

Personalised recommendations