Skip to main content
Log in

Day-night changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad

  • Original Papers
  • Published:
Oecologia Aims and scope Submit manuscript

Summary

A study was made of the bulk-leaf water relations of selected species of epiphytic bromeliads growing in their natural habitat in Trinidad (West Indies). Field measurements were made during the rainy season at three forest sites centred on the wetter part of the island. The epiphytic bromeliads were sampled in situ using modified rock-climbing techniques at 4- to 6-h intervals during complete day-nigh cycles. Eleven species were studied that differed in their photosynthetic pathways and habitat preferences.

The C3 species among the epiphytic bromeliads characteristically showed maximum values of xylem tension (measured with the pressure chamber) during the day, whereas the species with crassulacean acid metabolism (CAM) attained maximum values towards the end of the night. In addition, the CAM species showed large nocturnal increases in leaf-cell-sap osmotic pressure and titratable acidity. These nocturnal increases showed mean values of 0.601 MPa and 289 mol H+ m-3, respectively, for four species sampled at an exposed forest clearing (250 m), where CAM species were well represented. At the other two sites, a lowland forest (60 m) and a ridge forest (740 m), CAM bromeliads were found in the forest canopy, but in the lowest strata all the bromeliads were C3 species. This species distribution was associated with a marked vertical stratification of microlimate, the forest canopy being characterized by much bigger day-night changes in temperature and water-vapour-pressure deficit than the undergrowth. The C3-CAM intermediateGuzmania monostachia var.monostachia showed significant nocturnal acidification in the forest clearing but not in the understory of the lowland forest.

Taken as a whole, the C3 and CAM bromeliads were very similar in the range of values observed for xylem tension and osmotic pressure, as well as in aspects of their leaf anatomy. However, epidermal trichomes covered a large percentage of the leaf surface area in xeromorphic species (e.g.Tillandsia utriculata), whereas they were poorly developed in shade-tolerant species (e.g.G. lingulata var.lingulata). The absolute values of sylem tension and osmotic pressure were low for all species. Mean minimum xylem tension during the day-night cycles was in the range of 0.18–0.23 MPa and mean maximum in the range 0.41–0.53 MPa; during periods of rain, xylem tension reached a mean minimum of 0.12 MPa. Mean minimum osmotic pressure was in the range 0.449–0.523 MPa. Such between-site and between-species differences as were observed in the water relations of the bromeliads could be related to the microclimatic conditions prevailing in the various epiphytic habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

crassulacean acid metabolism

PPFD:

photosynthetic photon flux density

References

  • Beard JS (1946) The natural vegetation of Trinidad. Oxford Forestry Memoirs, Number 20. Oxford University Press

  • Beard JS (1955) The classification of tropical American vegetationtypes. Ecology 36:89–100

    Google Scholar 

  • Benzing DH, Burt KM (1970) Foliar permeability among twenty species of the Bromeliaceae. Bull Torrey Bot Club 97:269–279

    Google Scholar 

  • Benzing DH, Henderson K, Kessel B, Sulak J (1976) The absorptive capacities of bromeliad trichomes. Amer J Bot 63:1009–1014

    Google Scholar 

  • Benzing DH, Renfrow A (1971) The significance of photosynthetic efficiency to habitat preferences and phylogeny among tillandsioid bromeliads. Bot Gaz 132:19–30

    Google Scholar 

  • Benzing DH, Seemann J, Renfrow A (1978) The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. Amer J Bot 65:359–365

    Google Scholar 

  • Biebl R (1964) Zum Wasserhaushalt vonTillandsia recurvata L. undTillandsia usneoides L. auf Puerto Rico. Protoplasma 58:345–368

    Google Scholar 

  • Coutinho LM (1969) Novas observações sôbre a ocorrência do “Efeito de De Saussure” e suas relações com a suculência, a temperatura folhear e os movimentos estomáticos. Bol Fac Filos Ciên Letr USP No 331, Botânica 24:77–102

    Google Scholar 

  • Engmann KF (1934) Studien über die Leistungsfähigkeit der Wassergewebe sukkulenter Pflanzen. Beih Bot Zbl 52 (Abt A): 381–414

    Google Scholar 

  • Evans GC (1939) Ecological studies on the rain forest of Southern Nigeria. II. The atmospheric environmental conditions. J Ecol 27:436–482

    Google Scholar 

  • Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Google Scholar 

  • Gessner F (1956) Der Wasserhaushalt der Epiphyten und Lianen. In: W Ruhland (ed) Handbuch der Pflanzenphysiologie, Ban III, Pflanze und Wasser. Springer, Berlin Göttingen Heidelberg, pp 915–950

    Google Scholar 

  • Gibson AC (1982) The anatomy of succulence In: IP Ting, M Gibbs (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, Maryland, pp 1–17

    Google Scholar 

  • Goh CJ, Avadhani PN, Loh CS, Hanegraaf C, Arditti J (1977) Diurnal stomatal and acidity rhythms in orchid leaves. New Phytol 78:365–372

    Google Scholar 

  • Griffiths H, Smith JAC (1983) Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia (Berlin) 60:176–184

    Google Scholar 

  • Griffiths H, Smith JAC, Bassett M, Griffiths NM (1983) Field and laboratory investigations into the metabolism of the epiphytic Bromeliaceae in Trinidad. Rev Brasil Bot 6:61–65

    Google Scholar 

  • Grubb PJ, Tanner EVJ (1976) The montane forests and soils of Jamaica: a reassessment. J Arnold Arbor 57:313–368

    Google Scholar 

  • Grubb PJ, Whitmore TC (1966) A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effect on the distribution and physiognomy of the forests. J Ecol 54:303–333

    Google Scholar 

  • Harris JA (1918) On the osmotic concentration of the tissue fluids of phanerogamic epiphytes. Amer J Bot 5:490–506

    Google Scholar 

  • Kemp PR, Gardetto PE (1982) Photosynthetic pathway types of evergreen rosette plants (Liliaceae) of the Chihuahuan desert. Oecologia (Berlin) 55:149–156

    Google Scholar 

  • Kluge M, Lange OL, von Eichmann M, Schmid M (1973) Diurnaler Säurerhythmus beiTillandsia usneoides: Untersuchungen über den Weg des Kohlenstoffs sowie die Abhängigkeit des CO2-Gaswechsels von Lichtintensität, Temperatur und Wassergehalt der Pflanze. Planta 112:357–372

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lüttge U, Ball E (1977) Water relation parameters of the CAM plantKalanchoë daigremontiana in relation to diurnal malate oscillations. Oecologia (Berlin) 31:85–94

    Google Scholar 

  • Lüttge U, Smith JAC, Marigo G (1982) Membrane transport, osmoregulation, and the control of CAM. In: IP Ting, M Gibbs (eds) Crassulacean acid metabolism. American Society of Plant Physiologists, Rockville, Maryland, pp 69–91

    Google Scholar 

  • Martin CE, Christensen NL, Strain BR (1981) Seasonal patterns of growth, tissue acid fluctuations, and14CO2 uptake in the Crassulacean Acid Metabolism epiphyteTillandsia usneoides L. (Spanish Moss). Oecologia (Berlin) 49:322–328

    Google Scholar 

  • McWilliams EL (1970) Comparative rates of dark CO2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot Gaz 131:285–290

    Google Scholar 

  • Medina E (1974) Dark CO2 fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686

    Google Scholar 

  • Medina E, Delgado M (1976) Photosynthesis and night CO2 fixation inEcheveria columbiana v. Poellnitz. Photosynthetica 10:155–163

    Google Scholar 

  • Medina E, Delgado M, Troughton JH, Medina JD (1977) Physiological ecology of CO2 fixation inBromeliaceae Flora 166:137–152

    Google Scholar 

  • Medina E, Troughton JH (1974) Dark CO2 fixation and the carbon isotope ratio in Bromeliaceae. Plant Sci Lett 2:357–362

    Google Scholar 

  • Metzler W (1926) Beitrage zur vergleichenden Anatomie blattsukkulenter Pflanzen. Bot Arch 6:50–83

    Google Scholar 

  • Mez C (1904) Physiologische Bromeliaceen-Studien. I. Die Wasser-Ökonomie der extrem atmosphärischen Tillandsien. Jahrb wiss Botanik 40:157–229

    Google Scholar 

  • Milburn TR, Pearson DJ, Ndegwe NA (1968) Crassulacean acid metabolism under natural tropical conditions. New Phytol 67:883–897

    Google Scholar 

  • Neales TF (1973) The effect of night temperature on CO2 assimilation, transpiration, and water use efficiency inAgave americana L. Aust J Biol Sci 26:705–714

    Google Scholar 

  • Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, San Francisco

    Google Scholar 

  • Nuernbergk EL (1961) Endogener Rhythmus und CO2-Stoffwechsel bei Pflanzen mit diurnalem Säurerhythmus. Planta 56:28–70

    Google Scholar 

  • Olivares E, Urich R, Montes G, Coronel I, Herrera A (1984) Occurrence of Crassulacean acid metabolism inCissus trifoliata L. (Vitaceae). Oecologia (Berlin) 61:358–362

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism: a curiosity in context. Ann Rev Plant Physiol 29:379–414

    Google Scholar 

  • Osmond CB, Winter K, Ziegler H (1982) Functional significance of different pathways of CO2 fixation in photosynthesis. In: OL Lange, PS Nobel, CB Osmond, H Ziegler (eds) Encyclopedia of plant physiology, New Series, Vol 12 B, Physiological plant ecology II, Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 479–547

    Google Scholar 

  • Perry DR (1984) The canopy of the tropical rain forest. Scientific American 251 (5):114–122

    Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I — The bromeliad flora. Evolution 2:58–89

    Google Scholar 

  • Rauh W (1970) Bromelien für Zimmer und Gewächshaus, Band 1, Die Tillandsioideen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Richards PW (1952) The tropical rain forest. Cambridge University Press

  • Schimper AFW (1984) Ueber Bau und Lebensweise der Epiphyten Westindiens. Bot Zbl 17:192–195 et seq

    Google Scholar 

  • Schimper AFW (1888) Die epiphytische Vegetation Amerikas. Botanische Mittheilungen aus den Tropen, Heft 2. Gustav Fischer, Jena

    Google Scholar 

  • Schimper AFW (1935) Pflanzengeographie auf physiologischer Grundlage, 3. Auflage, FC von Faber (ed), Erster Band. Gustav Fischer, Jena

    Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad Sci USA 52:119–125

    Google Scholar 

  • Sinclair R (1984) Water relations of tropical epiphytes. III. Evidence for Crassulacean Acid Metabolism. J Exp Bot 35:1–7

    Google Scholar 

  • Smith JAC (1984) Water relations in CAM plants. In: E Medina (ed) Physiological ecology of CAM plants. International Center for Tropical Ecology (Unesco-IVIC), Caracas, pp 30–51

    Google Scholar 

  • Smith JAC, Heuer S (1981) Determination of the volume of intercellular spaces in leaves and some values for CAM plants. Ann Bot 48:915–917

    Google Scholar 

  • Smith JAC, Lüttge U (1985) Day-night changes in leaf water relations associated with the rhythm of crassulacean acid metabolism inKalanchoë daigremontiana. Planta 163:272–282

    Google Scholar 

  • Smith LB, Downs RJ (1974) Flora Neotropica, Monograph No 14, Part 1, Pitcairnioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Downs RJ (1977) Flora Neotropica Monograph No 14, Part 2, Tillandsioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Downs RJ (1979) Flora Neotropica, Monograph No 14, Part 3, Bromelioideae (Bromeliaceae). Hafner Press, New York

    Google Scholar 

  • Smith LB, Pittendrigh CS (1967) Bromeliaceae In: Flora of Trinidad and Tobago, Vol III, Part II, Epigynae (pars). Ministry of Agriculture, Industry and Commerce, Trinidad and Tobago, pp 35–91

    Google Scholar 

  • Sokal RR, Rohlf FJ (1969) Biometry. Freeman, San Francisco

    Google Scholar 

  • Steudle E, Smith JAC, Lüttge U (1980) Water-relation parameters of individual mesophyll cells of the crassulacean acid metabolism plantKalanchoë daigremontiana. Plant Physiol 66:1155–1163

    Google Scholar 

  • Sugden AM (1981) Aspects of the ecology of vascular epiphytes in two Colombian cloud forests. II. Habitat preferences of Bromeliaceae in the Serrania de Macuira. Selbyana 5:264–273

    Google Scholar 

  • Tietze M (1906) Physiologische Bromeliaceen-Studien II. Die Entwickelung der wasseraufnehmenden Bromeliaceen-Trichome. Z Naturwiss 78:1–50

    Google Scholar 

  • Tomlinson PB (1969) Antomy of the Monocotyledons (CR Metcalfe, ed), III Commelinales-Zingiberales. Oxford University Press

  • Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J Exp Bot 23:267–282

    Google Scholar 

  • Tyree MT, Jarvis PG (1982) Water in tissues and cells. In: OL Lange, PS Nobel, CB Osmond, H Ziegler (eds) Encyclopedia of plant physiology, New Series, Vol 12 B, Physiological plant ecology II, Water relations and carbon assimilation. Springer, Berlin Heidelberg New York, pp 35–77

    Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Virzo De Santo A, Alfani A, Russo G, Fioretto A (1983) Relationship between CAM and succulence in some species of Vitaceae and Piperaceae. Bot Gaz 144:342–346

    Google Scholar 

  • Virzo De Santo A, De Luca P, Alfani A (1977) Adattamenti fisiologici alla vita “acrea” nel genereTillandsia. Giorn Bot Ital 111:195–210

    Google Scholar 

  • Walter H (1960) Einführung in die Phytologie, Band III, Grundlagen der Pflanzenverbreitung, 1. Teil, Standortslehre (analytisch-ökologische Geobotanik), 2. Auflage. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Walter H, Breckle S-W (1984) Ökologie der Erde. Band 2: Spezielle Ökologie der Tropischen und Subtropischen Zonen. Gustav Fischer, Stuttgart

    Google Scholar 

  • Willert DJ von, Brinckmann E, Eller BM, Scheitler B (1983a) CO2 exchange of CAM exhibiting succulents in the southern Namib desert in relation to microclimate and water stress. Photosynthesis Research 4:289–298

    Google Scholar 

  • Willert DJ von, Brinckmann E, Scheitler B, Eller BM (1983b) Responses of Crassulacean acid metabolism (CAM) to increasing and decreasing water stress in plants in the southern Namib desert. In: R Marcelle, H Clijsters, M Van Poucke (eds) Effect of stress on photosynthesis. Martinus Nijhoff/Dr W Junk, The Hague, pp 155–163

    Google Scholar 

  • Winter K, Lüttge U, Winter E, Troughton JH (1978) Seasonal shift from C3 photosynthesis to Crassulacean Acid Metabolism inMesembryanthemum crystallinum growing in its natural environment. Oecologia (Berlin) 34:225–237

    Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia (Berlin) 57:129–141

    Google Scholar 

  • Woodhouse RM, Williams JG, Nobel PS (1980) Leaf orientation, radiation interception, and nocturnal acidity increases by the CAM plantAgave deserti (Agavaceae). Amer J Bot 67:1179–1185

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, J.A.C., Griffiths, H., Bassett, M. et al. Day-night changes in the leaf water relations of epiphytic bromeliads in the rain forests of Trinidad. Oecologia 67, 475–485 (1985). https://doi.org/10.1007/BF00790017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00790017

Keywords

Navigation