Combustion, Explosion and Shock Waves

, Volume 27, Issue 4, pp 500–504 | Cite as

Configuration of a cloud of detonation products during expansion in air

  • A. V. Morozov
  • E. I. Ermolovich
  • G. S. Doronin
  • D. I. Matsukov


Shadowgraph techniques are used to record the configuration of detonation products in air from various kinds of high-explosive charges with spherical and cxlindrical geometries. It is established that the cloud of detonation products from a cylindrical charge after expansion to its maximum size departs considerably from a spherical configuration. The cloud of detonation products attains its ultimate size at a distance of 25–30 times the initial radius, contrary to numerical results, which indicate that this distance does not exceed 15 or 16 times the initial radius of the charge.


Dynamical System Mechanical Engineer Maximum Size Detonation Product Initial Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. A. Sadovskii, in: Physics of Explosions [in Russian], No. 1, Izd. Akad. Nauk SSSR, Moscow (1952).Google Scholar
  2. 2.
    H. L. Brode, Phys. Fluids, No. 2, 217 (1959).Google Scholar
  3. 3.
    A. S. Fonarev and S. Yu. Chernyavskii, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 169 (1968).Google Scholar
  4. 4.
    L. V. Shurshalov, Zh. Vychisl. Mat. Mat. Fiz.,13, No. 4, 971 (1973).Google Scholar
  5. 5.
    F. A. Baum, L. P. Orlenko, K. P. Stanyukovich, et al., Physics of Explosions [in Russian], Nauka, Moscow (1975).Google Scholar
  6. 6.
    N. N. Sysoev and F. V. Shugaev, Shock Waves in Gases and Condensed Media [in Russian], Moscow State Univ. (1987).Google Scholar
  7. 7.
    A. C. Dubovik, Photograhic Recording of Fast Processes [in Russian], Nauka, Moscow (1975).Google Scholar
  8. 8.
    Yu. S. Zav'yalov, B. I. Kvasov, and V. L. Miroshinchenko, Methods of Spline Functions [in Russian], Nauka, Moscow (1980).Google Scholar
  9. 9.
    S. I. Anisimov and Ya. B. Zel'dovich, Pis'ma Zh. Tekh. Fiz.,3, No. 20, 1081 (1977).Google Scholar
  10. 10.
    J. W. Kury, H. C. Hornig, E. L. Lee, et al., in: 14th International Symposium on Detonation, White Oak (1965).Google Scholar
  11. 11.
    V. V. Rozhdestvenskii, B. D. Khristoforov, and V. L. Yur'ev, “Influence of Rayleigh-Taylor instability on the radiation characteristics of the detonation of high explosives in air,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 173 (1989).Google Scholar
  12. 12.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1978).Google Scholar
  13. 13.
    A. F. Belyaev and Yu. B. Khariton, in: Detonation of Condensed and Gaseous Systems [in Russian], Nauka Moscow (1986).Google Scholar
  14. 14.
    L. A. Merzhievskii and V. M. Titov, “High-velocity impact,” Fiz. Goreniya Vzryva,23, No. 5, 92 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. V. Morozov
  • E. I. Ermolovich
  • G. S. Doronin
  • D. I. Matsukov

There are no affiliations available

Personalised recommendations