Skip to main content
Log in

Neuronal control of coronary blood flow

  • Invited Contributions to the Symposium “Regulation of Coronary Blood Flow”, Held at the XV. World Congress of the International Society for Heart Research in Prague
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Controversies on acetylcholine-induced increases or decreases in coronary blood flow arise from obvious species differences, the role of endothelium in mediating vascular smooth muscle responses, and the marked negative chronotropic and inotropic effects of acetylcholine. In man, there appears to be a predominant dilation of intact epicardial coronary arteries and a constriction of artherosclerotic segments. However, at present there is no evidence for a vagal initiation of myocardial ischemia.

Coronary vascular β-adrenergic receptors mediate dilation, but appear to be functionally insignificant during sympathetic activation. The β-adrenergic mechanism contributing to myocardial ischemia are indirect, mediated by a tachycardia-related redistribution of blood flow away from the ischemic myocardium. α-Adrenergic receptors mediating epicardial coronary artery constriction in experimental studies appear not to be responsible for the initiation of ischemia in patients with angina at rest. However, α-adrenergic constriction of coronary resistance vessels resulting in the precipitation of poststenotic myocardial ischemia was demonstrated in experimental studies and recently confirmed in patients with effort angina. Non-adrenergic, non-cholinergic neurotransmitters exist; however, their role in regulating coronary blood flow remains entirely unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizawa Y, Murata M, Hayashi M, Funazaki T, Ito S, Shibata A (1985) Vasoconstrictor effect of neuropeptide Y (NPY) on canine coronary artery. Jpn J Physiol 49: 584–588

    Google Scholar 

  2. Anderson FL, Kralios AC, Hershberger R, Bristow MR (1988) Desensitization of myocardial but not coronary VIP receptor-mediated responses in dogs. Am J Physiol 255: H601–H607

    Google Scholar 

  3. Anderson FL, Kralios AC, Hershberger R, Bristow MR (1988) Effect of vasoactive intestinal peptide on myocardial contractility and coronary blood flow in the dog: comparison with isoproterenol and forskolin. J Cardiovasc Pharmacol 12: 365–371

    Google Scholar 

  4. Arthur JM, Bonham AC, Gutterman DD, Gebhart GF, Marcus ML, Brody MJ (1991) Coronary vasoconstriction during stimulation in hypothalamic defense region. Am J Physiol 260: R335-R345

    Google Scholar 

  5. Bache RJ, Cobb FR (1977) Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41: 648–653

    Google Scholar 

  6. Bassenge E, Walter P, Doutheil U (1967) Wirkungsumkehr der adrenergischen Coronargefässreaktion in Abhängigikeit vom Coronargefäßtonus. Pfluegers Arch 297: 146–155

    Google Scholar 

  7. Baumgart D, Ehring T, Kowallik P, Guth BD, Krajcar M, Heusch G (1993) The impact of α-adrenergic coronary vasoconstriction on the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 73: 869–886

    Google Scholar 

  8. Berkenboom G, Unger P (1991) Alpha-adrenergic coronary constriction in effort angina. In: Heusch G, Ross J (eds) Adrenergic mechanisms in myocardial ischemia; Steinkopff, Darmstadt, pp 359–369

    Google Scholar 

  9. Berkenboom GM, Abramowicz M, Vandermoten P, Degre SG (1986) Rote of alpha-adrenergic coronary tone in exercise-induced angina pectoris. Am J Cardiol 57: 195–198

    Google Scholar 

  10. Berne RM (1958) Effect of epinephrine and norepinephrine on coronary circulation. Circ Res 6: 644–655

    Google Scholar 

  11. Berne RM, DeGeest H, Levy MN (1965) Influence of the cardiac nerves on coronary resistance. Am J Physiol 208: 763–769

    Google Scholar 

  12. Bonham AC, Gutterman DD, Arthur JM, Marcus ML, Gebhart GF, Brody MJ (1987) Neurogenic regulation of coronary blood flow: evidence for a central nervous system pathway. Circ Res 61 (suppl II): II-42–II-46

    Google Scholar 

  13. Bonham AC, Gutterman DD, Arthur JM, Marcus ML, Gebhart GF, Brody MJ (1987) Electrical stimulation in perifornical lateral hypothalamus decreases coronary blood flow in cats. Am J Physiol 252: H474–H484

    Google Scholar 

  14. Borchard F (1978) The adrenergic nerves of the normal and the hypertrophied heart. Thieme Verlag Stuttgart 33: 1–68

    Google Scholar 

  15. Brown BG, Bolson EL, Dodge HT (1984) Dynamic mechanisms in human coronary stenosis. Circulation 70: 917–922

    Google Scholar 

  16. Brown BG, Lee AB, Bolson EL, Dodge HT (1984) Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70: 18–24

    Google Scholar 

  17. Buck JD, Hardman HF, Warltier DC, Gross GJ (1981) Changes in ischemic blood flow distribution and dynamic severity of a coronary stenosis induced by beta blockade in the canine heart. Circulation 64: 708–715

    Google Scholar 

  18. Buffington CW, Feigl EO (1981) Adrenergic coronary vasoconstriction in the presence of coronary stenosis in the dog. Circ Res 48: 416–423

    Google Scholar 

  19. Busch P, Deussen A, Heusch G (1988) Sympathetic effects on segmental coronary resistances and their role in coronary collateral perfusion. J Appl Cardiol 3: 145–160

    Google Scholar 

  20. Camici PG, Marraccini P, Gistri R, Salvadori PA, Sorace O, L'Abbate A (1994) Adrenergically mediated coronary vasoconstriction in patients with syndrome X. Cardiovasc Drugs Ther 8: 221–226

    Google Scholar 

  21. Chen DG, Dai X-Z, Zimmerman BG, Bache RJ (1988) Postsynaptic α1-and α2-adrenergic mechanisms in coronary vasoconstriction. J Cardiovasc Pharmacol 11: 61–67

    Google Scholar 

  22. Chierchia S, Davies G, Berkenboom G, Crea F, Crean P, Maseri A (1984) α-adrenergic receptors and coronary spasm: an elusive link. Circulation 69: 8–14

    Google Scholar 

  23. Chierchia S, Pratt T, DeCoster P, Maseri A (1985) Alpha-adrenergic control of collateral flow: another determinant of coronary flow reserve. Circulation 72 (suppl III): 190 (abstr.)

    Google Scholar 

  24. Chilian WM (1991) Functional distribution of α1- and α1-adrenergic receptors in the coronary microcirculation. Circulation 84: 2108–2122

    Google Scholar 

  25. Chilian WM, Ackell PH (1988) Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62: 216–225

    Google Scholar 

  26. Chilian WM, Boatwright RB, Shoji T, Griggs DM (1981) Evidence against significant resting sympathetic coronary vasoconstrictor tone in the conscious dog. Circ Res 49: 866–876

    Google Scholar 

  27. Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML (1986) Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58: 68–82

    Google Scholar 

  28. Chilian WM, Layne SM, Eastham CL, Marcus ML (1989) Heterogeneous microvascular coronary α-adrenergic vasoconstriction. Circ Res 64: 376–388

    Google Scholar 

  29. Clarke JG, Kerwin R, Larkin S, Lee Y, Yacoub M, Davies GJ, Hackett D, Dawbarn D, Bloom SR, Maseri A (1987) Coronary artery infusion of neuropeptide Y in patients with angina pectoris. Lancet 1,2: 1057–1059

    Google Scholar 

  30. Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–629

    Google Scholar 

  31. Cohen RA (1988) Platelet 5-hydroxytryptamine and vascular adrenergic nerves. News Physiol Sci 3: 185–189

    Google Scholar 

  32. Cohen RA, Zitnay KM, Weisbrod RM (1987) Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimal damage in vivo. Circ Res 61: 829–833

    Google Scholar 

  33. Collins P, Sheridan D (1985) Improvement in angina pectoris with alpha adrenoceptor blockade. Br Heart J 53: 488–492

    Google Scholar 

  34. Constantine JW, Lebel W (1980) Complete blockade by phenoxybenzamine of alpha 1-but not of alpha 2-vascular receptors in dogs and the effect of propranolol. Naunyn Schmiedebergs Arch Pharmacol 314: 149–156

    Google Scholar 

  35. Cox DA, Hintze TH, Vatner SF (1983) Effects of acetylcholine on large and small coronary arteries in conscious dogs. J Pharmacol Exp Ther 225: 764–769

    Google Scholar 

  36. Decker N, Schwartz PJ (1985) Postjunctional alpha1- and alpha2-adrenoceptors in the coronaries of the perfused guinea-pig heart. J Pharmacol Exp Ther 232: 251–257

    Google Scholar 

  37. Denn MJ, Stone HL (1976) Autonomic innervation of dog coronary arteries. J Appl Physiol 41: 30–35

    Google Scholar 

  38. Deussen A, Heusch G, Thämer V (1985) Alpha 2-adrenoceptor-mediated cornary vasoconstriction persists after exhaustion of coronary dilator reserve. Eur J Pharmacol 115: 147–153

    Google Scholar 

  39. Downey HF, Grice DP, Jones CE (1991) Systemic hypoxia activates a coronary vasconstrictor reflex response that is blocked by prazosin. J Cardiovasc Pharmacol 18: 657–664

    Google Scholar 

  40. Drexler H, Zeiher AM, Wollschläger H, Meinertz T, Just H, Bonzel T (1989) Flow-dependent coronary artery dilatation in humans. Circulation 80: 466–474

    Google Scholar 

  41. Ehring T, Krajcar M, Baumgart D, Kompa S, Hümmelgen M, Heusch G (1995) Cholinergic and alpha-adrenergic coronary vasomotion with increasing ischemia-reperfusion injury. Am J Physiol 268: H886–H894

    Google Scholar 

  42. Ellis AK, Kocke FJ (1979) Effects of preload on the transmural distribution of perfusion and pressure-flow relationships in the canine coronary vascular bed. Circ Res 46: 68–77

    Google Scholar 

  43. Ertl G, Bauer B, Becker H-H, Rose G (1993) Effects of neurotensin and neuropeptide Y on coronary circulation and myocardial function in dogs. Am J Physiol 264: H1062–H1068

    Google Scholar 

  44. Ezra D, Laurindo FRM, Eimerl J, Goldstein RE, Peck CC, Feuerstein G (1986) Tachykinin modulation of coronary blood flow. Eur J Pharmacol 122: 135–138

    Google Scholar 

  45. Ezra D, Laurindo FRM, Goldstein DS, Goldstein RE, Feuerstein G (1987) Calcitonin gene-related peptide: a potent modulator of coronary flow. Eur J Pharmacol 137: 101–105

    Google Scholar 

  46. Faber JE (1988) In situ analysis of α-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation. Circ Res 62: 37–50

    Google Scholar 

  47. Fam WM, McGregor M (1968) Effect of nitroglycerin and dipyridamole on regional coronary resistance Circ Res 22: 649–659

    Google Scholar 

  48. Feigl EO (1968) Carotid sinus reflex control of coronary blood flow. Circ Res 23: 223–237

    Google Scholar 

  49. Feigl EO (1969) Parasympathetic control of coronary blood flow in dogs. Circ Res 25: 509–519

    Google Scholar 

  50. Feigl EO (1975) Control of myocardial oxygen tension by sympathetic coronary vasoconstriction in the dog. Circ Res 37: 88–95

    Google Scholar 

  51. Feigl EO (1983) Coronary physiology. Physiol Rev 63: 1–205

    Google Scholar 

  52. Feigl EO (1987) The paradox of adrenergic coronary vasoconstriction. Circulation 76: 737–745

    Google Scholar 

  53. Feldman RD, Christy JP, Paul ST, Harrison DG (1989) β-adrenergic receptors on canine coronary collateral vessels: characterization and function. Am J Physiol 257: H1634–H1639

    Google Scholar 

  54. Fish RD, Nabel EG, Selwyn AP, Ludmer PL, Mudge GH, Kirshenbaum JM, Schoen FJ, Alexander RW, Ganz P (1988) Responses of coronary arteries of cardiac transplant patients to acetylcholine. J Clin Invest 81: 21–31

    Google Scholar 

  55. Franco-Cereceda A, Lundberg JM, Dahlöf C (1985) Neuropeptide Y and sympathetic control of heart contractility and coronary vascular tone. Acta Physiol Scand 124: 361–369

    Google Scholar 

  56. Franco-Cereceda A, Öwall A, Settergren G, Sollevi A, Lundberg JM (1990) Release of neuropeptide Y and noradrenaline from the human heart after aortic occlusion during coronary artery surgery. Cardiovasc Res 24: 242–246

    Google Scholar 

  57. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376

    Google Scholar 

  58. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP (1986) Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation 73: 865–876

    Google Scholar 

  59. Gerova M, Barta E, Gero J (1979) Sympathetic control of major coronary artery diameter in the dog. Circ Res 44: 459–467

    Google Scholar 

  60. Gerova M, Dolezel S, Gero J, Barta E (1979) Role of the vagus in control of the major conduit coronary artery in the dog. Physiol Bohemoslov 28: 299–307

    Google Scholar 

  61. Gewirtz H, Most AS, Williams DO (1982) The effect of generalized alphareceptor stimulation on regional myocardial blood flow distal to a seveere coronary artery stenosis. Circulation 65: 1329–1336

    Google Scholar 

  62. Giudicelli JF, Berdeaux A, Tato F, Garnier M (1980) Left stellate stimulation: regional myocardial flows and ischemic injury in dogs. Am J Physiol 239: H359–H364

    Google Scholar 

  63. Gould L, Reddy GV, Gombrecht RF (1973) Oral phentolamine in angina pectoris. Jpn Heart J 14: 393–397

    Google Scholar 

  64. Gregorini L, Fajadet J, Robert G, Cassagneau B, Bernis M, Marco J (1994) Coronary vasoconstriction after percutaneous transluminal coronary angioplasty is attenuated by antiadrenergic agents. Circulatior 90: 895–907

    Google Scholar 

  65. Gu J, Polak JM, Adrian TE, Allen JM, Tatemoto K, Bloom SR (1983) Neuropeptide Tyrosine (NPY) — a major cardiac neuropeptide. Lancet 1: 1008–1010

    Google Scholar 

  66. Gulbenkian S, Opgaard OS, Ekman R, Andrade NC, Wharton J, Polak JM, Queiroz e Melo J, Edvinsson L (1993) Peptidergic innervation of human epicardial coronary arteries. Circ Res 73: 579–588

    Google Scholar 

  67. Gunther S, Green L, Muller JE, Mudge GH, Grossman W (1981) Prevention by nifedipine of abnormal coronary vasoconstriction in patients with coronary artery disease. Circulation 63: 849–855

    Google Scholar 

  68. Guth BD, Heusch G, Seitelberger R, Ross Jr. J (1987) Mechanism of beneficial effect of beta-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 60: 738–746

    Google Scholar 

  69. Guth BD, Heusch G, Seitelberger R, Ross Jr. J (1987) Elimination of exercise-induced regional myocardial dysfunction by a bradycardic agent in dogs with chronic coronary stenosis. Circulation 75: 661–669

    Google Scholar 

  70. Guth BD, Miura T, Thaulow E, Heusch G, Ross Jr. J (1993) Alphaladrenergic blockade reduces exerciseinduced regional myocardial ischemia in dogs. Basic Res Cardiol 88: 282–296

    Google Scholar 

  71. Guth BD, Thaulow E, Heusch G, Seitelberger R, Ross Jr J (1990) Myocardial effects of selective alphaadrenoceptor blockade during exercise in dogs. Circ Res 66: 1703–1712

    Google Scholar 

  72. Gwirtz PA, Overn SP, Mass HJ, Jones CE (1986) Alpha 1-adrenergic constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 250: H1117–H1126

    Google Scholar 

  73. Gwirtz PA, Stone HL (1982) Coronary blood flow changes following activation of adrenergic receptors in the conscious dog. Am J Physiol 243: H13–H19

    Google Scholar 

  74. Haass M, Cheng B, Richardt G, Lang RE, Schöning A (1989) Characterization and presynaptic modulation of stimulation-evoked exocytotic co-release of noradrenaline and neuropeptide Y in guinea pig heart. Naunyn Schmiedebergs Arch Pharmacol 339: 71–78

    Google Scholar 

  75. Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD (1972) Coronary vascular responses to stimulation of chemoreceptors and baroreceptors. Circ Res 31: 8–17

    Google Scholar 

  76. Hamilton FN, Feigl EO (1976) Coronary vascular sympathetic beta-receptor innervation. Am J Physiol 230: 1569–1576

    Google Scholar 

  77. Harrison DG, Chilian WM, Marcus ML (1986) Absence of functioning alpha-adrenergic receptors in mature canine coronary collaterals. Circ Res 59: 133–142

    Google Scholar 

  78. Hautamaa PV, Dai X-Z, Homans DC, Bache RJ (1989) Vasomotor activity of moderately well-developed canine coronary collateral circulation. Am J Physiol 256: H890–H897

    Google Scholar 

  79. Hautamaa PV, Dai XZ, Homans DC, Robb JF, Bache RJ (1987) Vasomotor properties of immature canine coronary collateral circulation. Am J Physiol 252: H1105–H1111

    Google Scholar 

  80. Haws CW, Green LS, Burgess MJ, Abildskov JA (1987) Effects of cardiac sympathetic nerve stimulation on regional coronary blood flow. Am J Physiol 252: H269–H274

    Google Scholar 

  81. Heistad DD, Armstrong ML, Marcus ML, Piegors DJ, Mark AL (1984) Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circ Res 54: 711–718

    Google Scholar 

  82. Heusch G (1990) α-adrenergic mechanisms in myocardial ischemia. Circulation 81: 1–13

    Google Scholar 

  83. Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8–15

    Google Scholar 

  84. Heusch G, Deussen A (1984) Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6: 378–383

    Google Scholar 

  85. Heusch G, Deussen A, Schipke J, Thämer V (1984) α1-and α2-adrenoceptor-mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6: 961–968

    Google Scholar 

  86. Heusch G, Guth BD, Seitelberger R, Ross Jr J (1987) Attenuation of exercise-induced myocardial ischemia in dogs with recruitment of coronary casodilator reserve by nifedipine. Circulation 75: 482–490

    Google Scholar 

  87. Heusch G, Seitelberger R, Guth BD, Ross Jr J (1986) Adrenergic mechanisms in myocardial ischemia. J Appl Cardiol 1: 125–142

    Google Scholar 

  88. Heusch G, Yoshimoto N, Heegemann H, Thämer V (1983) Interaction of methoxamine with compensatory vasodilation distal to coronary stenoses. Drug Res 33: 1647–1650

    Google Scholar 

  89. Heyndrickx GR, Muylaert P, Pannier JL (1982) α-adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242: H805–H809

    Google Scholar 

  90. Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I (1984) Role of prejunctional alpha 2-adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res 54: 683–693

    Google Scholar 

  91. Hirsch EF, Borghard-Erdle AM (1961) The innervation of the human heart. Arch Pathol 71: 384–407

    Google Scholar 

  92. Hodgson JM, Cohen MD, Szentpetery S, Thames MD (1989) Effects of regional α-and β-blockade on resting and hyperemic coronary blood flow in conscious, unstressed humans. Circulation 79: 797–809

    Google Scholar 

  93. Hodgson JM, Marshall JJ (1989) Direct vasoconstriction and endothelium-dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation 79: 1043–1051

    Google Scholar 

  94. Hoffman JIE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29: 429–464

    Google Scholar 

  95. Holmgren S, Abrahamsson T, Almgren O (1985) Adrenergic innervation of coronary arteries and ventricular myocardium in the pig: fluorescence microscopic appearance in the normal state and after ischemia. Basic Res Cardiol 80: 18–26

    Google Scholar 

  96. Holtz J, Giesler M, Bassenge E (1983) Two dilatory mechanisms of anti-anginal drugs on epicardial coronary arteries in vivo: indirect, flow-dependent, endothelium-mediated dilation and direct smooth muscle relaxation. Z Kardiol 72 (suppl 3): 98–106

    Google Scholar 

  97. Holtz J, Mayer E, Bassenge E (1977) Demonstration of alpha-adrenergic coronary control in different layers of canine myocardium by regional myocardial sympathectomy. Pfluegers Arch 372: 187–194

    Google Scholar 

  98. Holtz J, Saeed M, Sommer O, Bassenge E (1982) Norepinephrine constricts the canine coronary bed via postsynaptic α2-adrenoceptors. Eur J Pharmacol 82: 199–202

    Google Scholar 

  99. Hopwood AM, Burnstock G (1987) ATP mediates coronary vasconstriction via P2x-purinoceptors and coronary vasodilatation via P2y-purinoceptors in the isolated perfused rat heart. Eur J Pharmacol 136: 49–54

    Google Scholar 

  100. Horio Y, Yasue H, Rokutanda M, Nakamura N, Ogawa H, Takaoka K, Matsuyama K, Kimura T (1986) Effects of intracoronary injection of acetylcholine on coronary arterial diameter. Am J Cardiol 57: 984–989

    Google Scholar 

  101. Hossack KF, Brown BG, Stewart DK, Dodge HT (1984) Diltiazem-induced blockade of sympathetically mediated constriction of normal and diseased coronary arteries: lack of epicardial coronary dilatory effect in humans. Circulation 70: 465–471

    Google Scholar 

  102. Huang AH, Feigl EO (1988) Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62: 286–298

    Google Scholar 

  103. Indolfi C, Piscione F, Villari B, Russolillo E, Rendina V, Golino P, Condorelli M, Chiariello M (1992) Role of α2-adrenoceptors in normal and atherosclerotic human coronary circulation. Circulation 86: 1116–1124

    Google Scholar 

  104. Ishikawa Y, Umemura S, Uchino K, Shindou T, Yasuda G, Minamisawa K, Hayashi S, Hirawa N, Ishii M (1991) Identification of an alpha2-adrenoceptor in human coronary arteries by radioligand binding assay. Life Sci 48: 2513–2518

    Google Scholar 

  105. Ito BR, Feigl EO (1985) Carotid baroreceptor reflex coronary vasodilation in the dog. Circ Res 56: 486–495

    Google Scholar 

  106. Ito BR, Feigl EO (1985) Carotid chemoreceptor reflex parasympathetic coronary vasodilation in the dog. Am J Physiol 249: H1167–H1175

    Google Scholar 

  107. Johannsen UJ, Mark AL, Marcus ML (1982) Responsiveness to cardiac sympathetic nerve stimulation during maximal coronary dilation produced by adenosine. Circ Res 50: 510–517

    Google Scholar 

  108. Jones CE, Liang IYS, Maulsby MR (1986) Cardiac and coronary effects of prazosin and phenoxybenzamine during coronary hypotension. J Pharmacol Exp Ther 236: 204–211

    Google Scholar 

  109. Jones CJH, DeFily DV, Patterson JL, Chilian WM (1993) Endothelium-dependent relaxation competes with a1-and a2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87: 1264–1274

    Google Scholar 

  110. Jones LF, Brody MJ (1992) Characterization of coronary vasoconstriction produced by rostral ventrolateral medulla stimulation in rats. Am J Physiol 262: H437–H442

    Google Scholar 

  111. Kalsner S (1985) Cholinergic mechanisms in human coronary artery preparations: implications of species differences. J Physiol 358: 509–526

    Google Scholar 

  112. Kelley KO, Feigl EO (1978) Segmental alpha-receptor-mediated vasoconstriction in the canine coronary circulation. Circ Res 43: 908–917

    Google Scholar 

  113. Klocke FJ, Kaiser GA, Ross Jr J, Braunwald E (1965) An intrinsic adrenergic vasodilator mechanism in the coronary vascular bed of the dog. Circ Res 16: 376–382

    Google Scholar 

  114. Komaru T, Ashikawa K, Kanatsuka H, Sekiguchi N, Suzuki T, Takishima T (1990) Neuropeptide Y modulates vasoconstriction in coronary microvessels in the beating canine heart. Circ Res 67: 1142–1151

    Google Scholar 

  115. Kopia GA, Kopaciewicz LJ, Ruffolo Jr RR (1986) Alpha adrenoceptor regulation of coronary artery blood flow in normal and stenotic canine coronary arteries. J Pharmacol Exp Ther 239: 641–647

    Google Scholar 

  116. Kulakowski EC, Lampson WG, Schffer SW, Lovenberg W (1983) Action of substance P on the working rat heart. Biochem Pharmacol 32: 1097–1100

    Google Scholar 

  117. Laxson DD, Dai X-Z, Homans DC, Bache RJ (1989) The role of α1- and α2-adrenergic receptors in mediation of coronary vasoconstriction in hypoperfused ischemic myocardium during exercise. Circ Res 65: 1688–1697

    Google Scholar 

  118. Levene DL, Freeman MR (1976) α-adrenoceptor-mediated coronary artery spasm. J Am Med Assoc 236: 1018–1022

    Google Scholar 

  119. Liang IYS, Jones CE (1985) Alpha 1-adrenergic blockade increases coronary blood flow during coronary hypoperfusion. Am J Physiol 249: H1070–H1077

    Google Scholar 

  120. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046–1051

    Google Scholar 

  121. Main JS, Forster C, Armstrong PW (1991) Inhibitory role of the coronary arterial endothelium to α-adrenergic stimulation in experimental heart failure. Circ Res 68: 940–946

    Google Scholar 

  122. Mark AL, Abboud FM, Schmid PG, Heistad DD, Mayer UJ (1972) Differences in direct effects of adrenergic stimuli on coronary, cutaneous and muscular vessels. J Clin Invest 51: 279–287

    Google Scholar 

  123. Martin SE, Patterson RE (1989) Coronary constriction due to neuropeptide Y: Alleviation with cyclooxygenase blockers. Am J Physiol 257: H927–H934

    Google Scholar 

  124. Maruoka Y, McKirnan MD, Engler RL, Longhurst JC (1987) Punctional significance of alpha-adrenergic receptors in mature coronary collateral circulation of dogs. Am J Physiol 253: H582–H590

    Google Scholar 

  125. Matsuzaki M, Patritti J, Tajimi T, Miller M, Kemper WS, Ross Jr J (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 247: H52–H60

    Google Scholar 

  126. McEwan J, Larkin S, Davies G, Chierchia S, Brown M, Stevenson J, Mac-Intyre I, Maseri A (1986) Calcitonin gene-related peptide: a potent dilator of human epicardial coronary arteries. Circulation 74: 1243–1247

    Google Scholar 

  127. McGrath JC (1982) Evidence for more than one type of postijunctional alphaadrenoceptor. Biochem Pharmacol 31: 467–484

    Google Scholar 

  128. McRaven DR, Mark AL, Abbond FM, Mayer HE (1971) Responses of coronary vessels to adrenergic stimuli. J Clin Invest 50: 773–778

    Google Scholar 

  129. Miller WL, Belardinelli L, Bacchus A, Foley DH, Rubio R, Berne RM (1979) Canine myocardial adenosine and lactate production, oxygen consumption, and coronary blood flow during stellate ganglia stimulation. Circ Res 45: 708–718

    Google Scholar 

  130. Miyamoto MI, Rockman HA, Guth BD, Heusch G, Ross Jr. J (1991) Effect of α-adrenergic stimulation on regional contractile function and myocardial blood flow with and without ischemia. Circulation 84: 1715–1724

    Google Scholar 

  131. Miyashiro JK, Feigl EO (1993) Feedforward control of coronary blood flow via coronary β-receptor stimulation. Circ Res 73: 252–263

    Google Scholar 

  132. Mohrman DE, Feigl EO (1978) Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42: 79–86

    Google Scholar 

  133. Mudge GH, Goldberg S, Gunther S, Mann T, Grossman W (1979) Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59: 544–550

    Google Scholar 

  134. Mudge GH, Grossman W, Mills Jr RM, Lesch M, Braunwald E (1976) Reflex increase in coronary vascular resistance in patients with ischemic heart disease. N Engl J Med 295: 1333–1337

    Google Scholar 

  135. Mueller HS, Rao PS, Rao PB, Gory DJ, Mudd JG, Ayres SM (1982) Enhanced transcardiac 1-norepinephrine response during cold pressor test in obstructive coronary artery disease. Am J Cardiol 50: 1223–1228

    Google Scholar 

  136. Murphree SS, Saffitz JE (1988) Delineation of the distribution of β-adrenergic receptor subtypes in canine myocardium. Circ Res 63: 117–125

    Google Scholar 

  137. Murray PA, Lavallee M, Vatner SF (1984) Alpha-adrenergic-mediated reduction in coronary blood flow secondary to carotid chemoreceptor reflex activation in conscious dogs. Circ Res 54: 96–106

    Google Scholar 

  138. Murray PA, Vatner SF (1979) α-adrenoceptor attenuation of coronary vascular response to severe exercise in the conscious dog. Circ Res 45: 654–660

    Google Scholar 

  139. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP (1988) Dilation of normal and constriction of atherosclerotic coronary arteries caused by the cold pressor test. Circulation 77: 43–52

    Google Scholar 

  140. Nagata M, Pichet R, Lavallee M (1988) Coronary dilation with carotid chemoreceptor stimulation in cardiac-denervated dogs. Am J Physiol 255: H1330–H1335

    Google Scholar 

  141. Nakane T, Chiba S (1987) Postjunctional α-adrenoceptor subtypes in isolated and perfused canine epicardial coronary arteries. J Cardiovasc Pharmacol 10: 651–657

    Google Scholar 

  142. Nakane T, Tsujimoto G, Hashimoto K, Chiba S (1988) Beta adrenoceptors in the canine large coronary arteries: beta-1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 245: 936–943

    Google Scholar 

  143. Nathan HJ, Fiegl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250: H645–H653

    Google Scholar 

  144. Orlick AE, Ricci DR, Alderman EL, Stinson EB, Harrison DC (1978) Effects of alpha adrenergic blockade upon coronary hemodynamics. J Clin Invest 62: 459–467

    Google Scholar 

  145. Otani N, Yang T, Levy MN (1993) Intense sympathetic stimulation releases neuropeptide y but fails to evoke sustained coronary vasoconstriction in dogs. Circ Res 72: 816–826

    Google Scholar 

  146. RAff WK, Kosche F, Goebel H, Lochner W (1972) Coronary extravascular resistance at increasing left ventricular pressure. Pfluegers Arch 333: 352–361

    Google Scholar 

  147. Raizner AE, Chahine RA, Ishimori T, Verani MS, Zacca N, Jamal N, Miller RR, Luchi RJ (1980) Provocation of coronary artery spasm by the cold pressor test. Circulation 62: 925–932

    Google Scholar 

  148. Reid JVO, Ito BR, Huang AH, Buffington CW, Feigl EO (1985) Parasympathetic control of transmural coronary blood flow in dogs. Am J Physiol 249: H337–H343

    Google Scholar 

  149. Rimele TJ, Rooke TW, Aarhus LL, Vanhoutte PM (1983) Alpha-1 adrenoceptors and calcium in isolated canine coronary arteries. J Pharmacol Exp Ther 226: 668–672

    Google Scholar 

  150. Rinkema LE, Thomas Jr. JX, Randall WC (1982) Regional coronary vasoconstriction in response to stimulation of stellate ganglia. Am J Physiol 243: H410–H415

    Google Scholar 

  151. Robertson RM, Bernard YD, Carr RK, Robertson D (1983) Alphaadrenergic blockade in vasotonic angina: lack of efficacy of specific alphal-receptor blockade with prazosin. J Am Coll Cardiol 2: 1146–1150

    Google Scholar 

  152. Rosendorff C, Hoffman JIE, Verrier ED, Rouleau J, Boerboom LE (1981) Cholesterol potentiates the coronary artery response to norepinephrine in anesthetized and conscious dogs. Circ Res 48: 320–329

    Google Scholar 

  153. Rudehill A, Sollevi A, Franco-Cereceda A, Lundberg JM (1986) Neuropeptide Y (NPY) and the pig heart: Release and coronary vasoconstrictor effects. Peptides 7: 821–826

    Google Scholar 

  154. Saeed M, Holtz J, Elsner D, Bassenge E (1985) Sympathetic control of myocardial oxygen balance in dogs mediated by activation of coronary vascular α2-adrenoceptors. J Cardiovasc Pharmacol 7: 167–173

    Google Scholar 

  155. Schipke J, Heusch G, Deussen A, Thaemer V (1985) Acetylcholine induces constriction of epicardial coronary arteries in anesthetized dogs after removal of endothelium. Drug Res 35: 926–929

    Google Scholar 

  156. Schulz R, Oudiz RJ, Guth BD, Heusch G (1990) Minimal α1- and α2-adrenoceptor-mediated coronary vasoconstriction in the anaesthetized swine. Naunyn Schmiedebergs Arch Pharmacol 342:422–428

    Google Scholar 

  157. Schwartz PJ, Stone HL (1977) Tonic influence of the sympathetic nervous system on myocardial reactive hyperemia and on coronary blood flow distribution in dogs. Circ Res 41: 51–58

    Google Scholar 

  158. Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross Jr J (1988) Intracoronary alpha 2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62: 436–442

    Google Scholar 

  159. Seitelberger R, Guth BD, Lee JD, Katayama K, Heusch G, Ross Jr J (1986) Alpha1 and alpha2 receptor stimulation in conscious dogs increase coronary resistance but not myocardial function. J Am Coll Cardiol 7 (suppl A): 81A (abstr.)

    Google Scholar 

  160. Sekiguchi N, Kanatsuka H, Sato K, Wang Y, Akai K, Komaru T, Takishima T (1994) Effects of calcitonin generelated peptide on coronary microvessels and its role in acute myocardial ischemia. Circulation 89: 366–374

    Google Scholar 

  161. Sink JD, Hill RC, Chitwood Jr. WR, Abriss R, Wechsler AS (1979) Effects of phenylephrine on transmural distribution of myocardial blood flow in regions supplied by normal and collateral arteries during cardiopulmonary bypass. J Thorac Cardiovasc Surg 78: 236–243

    Google Scholar 

  162. Strader JR, Gwirtz PA, Jones CE (1988) Comparative effects of α1- and α2-adrenoceptors in modulation of coronary flow during exercise. J Pharmacol Exp Ther 246: 772–778

    Google Scholar 

  163. Toda N (1986) Alpha-adrenoceptor subtypes and diltiazem actions in isolated human coronary arteries. Am J Physiol 250: H718–H724

    Google Scholar 

  164. Tzivoni D, Keren A, Benhorin J, Gottlieb S, Atlas D, Stern S (1983) Prazosin therapy for refractory variant angina. Am Heart J 105: 262–266

    Google Scholar 

  165. Ullman B, Hulting J, Lundberg JM (1994) Prognostic value of plasma neuropeptide-Y in coronary care unit patients with and without acute myocardial infarction. Eur Heart J 15: 454–461

    Google Scholar 

  166. Uren NG, Seydoux C, Davies GJ (1993) Effect of intravenous calcitonin gene related peptide on ischaemia threshold and coronary stenosis severity in humans. Cardiovasc Res 27: 1477–1481

    Google Scholar 

  167. Van Winkle DM, Feigl EO (1989) Acetylcholine causes coronary vasodilation in dogs and baboons. Circ Res 65: 1580–1593

    Google Scholar 

  168. Vatner DE, Knight DR, Homcy CJ, Vatner SF, Young MA (1986) Subtypes of β-adrenergic receptors in bovine coronary arteries. Circ Res 59: 463–473

    Google Scholar 

  169. Vatner SF, Hintze TH (1983) Mechanism of constriction of large coronary arteries by β-adrenergic receptor blockade. Circ Res 53: 389–400

    Google Scholar 

  170. Vatner SF, Hintze TH, Macho P (1982) Regulation of large coronary arteries by β-adrenergic mechanisms in the conscious dog. Circ Res 51: 56–66

    Google Scholar 

  171. Vatner SF, McRitchie RJ (1975) Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ Res 37: 664–673

    Google Scholar 

  172. Vlahakes GJ, Baer RW, Uhlig PN, Verrier ED, Bristow JD, Hoffman JIE (1982) Adrenergic influence in the coronary circulation of conscious dogs during maximal vasodilation with adenosine. Circ Res 51: 371–384

    Google Scholar 

  173. von Restorff W, Bassenge E (1977) Transient effects of norepinephrine on myocardial oxygen balance. Pfluegers Arch 370: 131–137

    Google Scholar 

  174. Werns SW, Walton JA, Hsia HH, Nabel EG, Sanz ML, Pitt B (1989) Evidence of endothelial dysfunction in angiographically normal coronary arteries of patients with coronary artery disease. Circulation 79: 287–291

    Google Scholar 

  175. Wilson FR, Marcus ML, White CW (1988) Pulmonary inflation reflex: its lack of physiological significance in coronary circulation of humans. Am J Physiol 255: H866–H871

    Google Scholar 

  176. Winniford MD, Filipchuk N, Hillis LD (1983) Alpha-adrenergic blockade for variant angina: a long-term, double-blind, randomized trial. Circulation 67: 1185–1188

    Google Scholar 

  177. Woodman OL (1987) The role of α1- and α2-adrenoceptors in the coronary vasoconstrictor responses to neurally released and exogenous noradrenaline in the dog. Naunyn Schmiedebergs Arch Pharmacol 336: 161–168

    Google Scholar 

  178. Woodman OL, Vatner SF (1987) Coronary vasoconstriction mediated by α1- and α2-adrenoceptors in conscious dogs. Am J Physiol 253: H388–H393

    Google Scholar 

  179. Yasue H, Touyama M, Kato H, Tanaka S, Akiyama F (1976) Prinzmetal's variant form of angina as a manifestation of alpha-adrenergic receptor-mediated coronary artery spasm: documentation by coronary arteriography. Am Heart J 91: 148–155

    Google Scholar 

  180. Young MA, Knight DR, Vatner SF (1987) Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30: 211–234

    Google Scholar 

  181. Young MA, Knight DR, Vatner SF (1988) Parasympathetic coronary vasoconstriction induced by nicotine in conscious calves. Circ Res 62: 891–895

    Google Scholar 

  182. Young MA, Vatner DE, Knight DR, Graham RM, Homcy CJ, Vatner SF (1988) α-adrenergic vasoconstriction and receptor subtypes in large coronary arteries of calves. Am J Physiol 255: H1452–H1459

    Google Scholar 

  183. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H (1989) Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 14: 1181–1190

    Google Scholar 

  184. Zeiher AM, Drexler H, Wollschläger H, Just H (1991) Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83: 391–401

    Google Scholar 

  185. Zucker IH, Cornish KG, Hackley J, Bliss K (1987) Effects of left ventricular receptor stimulation on coronary blood flow in conscious dogs. Circ Res 61 (suppl II): II54-II60

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited Contributions to the Symposium “Regulation of coronary blood flow”, held at the XV. World Congress of the International Society for Heart Research in Prague 1995

Professor William M. Chilian, College Station, USA, was responsible for the editorial decisions on this manuscript. This policy applies to all manuscripts with authors from the editor's institution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgart, D., Heusch, G. Neuronal control of coronary blood flow. Basic Res Cardiol 90, 142–159 (1995). https://doi.org/10.1007/BF00789444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00789444

Key words

Navigation