Combustion, Explosion and Shock Waves

, Volume 27, Issue 2, pp 176–183 | Cite as

Flame propagation in a closed channel with cold side walls

  • G. M. Makhviladze
  • V. I. Melikhov
Article

Abstract

On the basis of complete nonsteady two-dimensional equations describing the motion of a reactive gas we have obtained a solution for the problem of flame propagation in a plane channel with cold side walls. We study in detail the process of flame quenching. The values of the critical Peclet numbers have been determined both numerically and analytically. We have ascertained the quantitative relationships governing flame propagation in the absence of quenching.

Keywords

Dynamical System Mechanical Engineer Side Wall Quantitative Relationship Peclet Number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G.MM. Makhviladze, V.I. Melikhov, and O.I. Melikhov, “Flame propagation in a closed channel,”Fiz. Goreniya Vzryva,23, No. 3, 30 (1987).Google Scholar
  2. 2.
    Ya. B. Zel'dovich, G.I. Barenblatt, V.B. Librovich, et al.,The Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).Google Scholar
  3. 3.
    Ya.B. Zeldovich,Zh. Éksp. Teor. Fiz.,11, No. 1, 159 (1941).Google Scholar
  4. 3.
    D. B. Spalding,Proc. R. Soc. London,A240, No. 1220, 83 (1957).Google Scholar
  5. 5.
    J. Buckmaster,Combust. Flame,26, No. 2, 151 (1976).Google Scholar
  6. 6.
    G. Joulin and P. Clavin,Acta Astronaut.,3, No. 3/4, 223 (1976).Google Scholar
  7. 7.
    V. I. Lyubchenko and G. I. Marchenko,Dokl. Akad. Nauk SSSR,291, No. 6, 1415 (1986).Google Scholar
  8. 8.
    S. L. Aly and C. E. Hermance,Combust. Flame,40, No. 2, 173 (1981).Google Scholar
  9. 9.
    F. Benkhaldoun, B. Larrouturou, and B. Denet,Combust. Sci. Techn.,64, No. 4-6, 187 (1989).Google Scholar
  10. 10.
    C. K. Westbrook, A. A. Adamczyk, and G. A. Lavoie,Combust. Flame,40, No. 1, 81 (1981).Google Scholar
  11. 11.
    W. Hocks, N. Peters, and G. Adomeit,Combust. Flame,41, No. 2, 157 (1981).Google Scholar
  12. 12.
    O. I. Smith, C. K. Westbrook, and R. F. Sawyer, in: 17th Symp. (Int.) on Combustion, Pittsburgh (1978).Google Scholar
  13. 13.
    C. R. Ferguson and J. C. Keck,Combust. Flame,28, No. 2, 197 (1977).Google Scholar
  14. 14.
    E. S. Oran and J. P. Boris,Progr. Energy Combust. Sci.,7, 1 (1981).Google Scholar
  15. 15.
    G. G. Kopylov, G. M. Makhviladze, O. I. Melikhov, et al., Preprint No. 237, Akad. Nauk SSSR, IPM, Moscow (1984).Google Scholar
  16. 16.
    G. M. Makhviladze and S. B. Shcherbak,IFZh,38, No. 3, 528 (1980).Google Scholar
  17. 17.
    G. M. Makhviladze and V. I. Melikhov,Matematicheskoe Modelirovanie,1, No. 6, 146 (1989).Google Scholar
  18. 18.
    V. S. Babkin, A. M. Badalyan, and V. V. Nikulin,Combustion of Heterogenous and Gaseous Systems [in Russian], Chemogolovka (1977).Google Scholar
  19. 19.
    É. S. Stessel', “The effect of natural convection on the limits of flame propagation,”Fiz. Goreniya Vzryva,15, No. 3, 10 (1979).Google Scholar
  20. 20.
    H. Groeber, S. Erk, and U. Grigull,The Fundamentals of Heat Exchange [Russian translation], IL, Moscow (1958).Google Scholar
  21. 21.
    V. F. Zakaznov, L. A. Kursheva, and Z. I. Fedina, “Determining the normal velocities and critical diameters of flame quenching in ammonia-air mixtures,”Fiz. Goreniya Vzryva,14, No. 6, 22 (1978).Google Scholar
  22. 22.
    A. G. White,J. Chem. Soc.,121, 1688 (1922).Google Scholar
  23. 23.
    N. H. Pratt and E. S. Starkman, in: 12th Symp. (Int.) on Combustion, Pittsburgh (1969).Google Scholar
  24. 24.
    N. B. Vargaftik,Handbook on the Thermophysical Properties of Gases and Liquids [in Russian], Fizmatgiz, Moscow (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • G. M. Makhviladze
  • V. I. Melikhov

There are no affiliations available

Personalised recommendations