Skip to main content
Log in

Dynamics of elasto-viscoplastic plates and shells

  • Originals
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

In this paper, the problem of the elasto-viscoplastic dynamic behaviour of geometrically non-linear plates and shells is studied under the assumption of small strains and moderate rotations. The Chaboche and Bodner-Partom models were chosen among several types of constitutive laws. To avoid the calculation of the stiffness matrix, an effective procedure using the central difference method of solving the equations of motion was applied. The trapezoidal method was used to integrate the constitutive viscoplastic laws. A nine-node isoparametric shell element was utilised for the finite element algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perzyna, P.: Fundamental problems in viscoplasticity. Advances in Mechanics 9 (1966) 243–377

    Google Scholar 

  2. Bodner, S. R.;Partom, Y.: Constitutive equations for elasto-viscoplastic strain-hardening materials. Trans. ASME Ser E: J. Appl. Mech. 42 (1975) 385–389

    Google Scholar 

  3. Chaboche, J. L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. 17th Polish Conf. on Mechanics of Solids, Szczyrk, Bul. de l'Acad. Polonaise des Sciences, Serie Sc. et Techn. 25 (1977) 33–42

    Google Scholar 

  4. Miller, A.: An inelastic constitutive model for monotonic, cyclic and creep ceformation: Part I-Equations development and analytical procedures. Trans. ASME. Ser. H: J. Eng. Mater. Technol. 98 (1976) 97–105

    Google Scholar 

  5. Walker, K. P.: Research and development program for nonlinear structural modelling with advanced time-temperature dependent relationships. NASA CR-165533 (1981)

  6. Krempl E.;Mcmahon J. J.;Yao D.: Viscoplasticity based on overstress with a differential growth law for the equilibrium stress. Mech. Mater. 5 (1984) 35–48

    Google Scholar 

  7. Woźnica, K.: Lois de comportement du solide élasto-viscoplastique. Cahiers de Mécanique 2/93 Univ. de Sciences et Tech. Lille, EUDIL-LML (Fiab. des Structures)

  8. Wierzbicki, T.: Bending of rigid-viscoplastic circular plate. Arch. Mech. Stos. 16 (1964) 1183–1196

    Google Scholar 

  9. Bukovcev, I. M.; Cemikina, T. D.: On the viscoplastic flow of circular twisting plates and shells (in Russian). Proc. Soviet Union Ac. Sc. Mech. Mat. (1964) 68–76

  10. Sankaranaryanan, R.: Viscoplastic analysis of circular cylindrical shells. Proc. Nat. Inst. Sc. India 33 (1967) 1–2

    Google Scholar 

  11. Pabjanek, A.: Analysis of viscoplastic cylindrical shells. IPPT Reports, Polish Academy of Sci. 43 (1971)

  12. Golinval, J. C.: Calcul par éléments finis de structures élasto-viscoplastiques soumises à des chargements cycliques à haute température. Université de Liège, Collection des publications de la Faculté des Sciences Appliques, 126 b, Liège 1989

  13. Owen, D. R. J.;Cuo Quian Liu: Elasto-viscoplastic analysis of anisotropic laminated Plates and shells. Eng. Comput. 6 (1985) 90–95

    Google Scholar 

  14. Haghi, M.;Anand, L.: Analysis of strain hardening viscoplastic thick-walled sphere and cylinder under external pressure. Int. J. Plasticity 7 (1991) 123–140

    Google Scholar 

  15. Diez, M. A.;Godoy, L. A.: Viscoplastic incompressible flow of frictional-cohesive solids. Int. J. Solids Struct. 29 (1992) 395–407

    Google Scholar 

  16. Baker, W. E.: The elastic-plastic response of thin spherical shells to internal loading. Trans. ASME Ser. E. J. Appl. Mech. 27 (1960) 139–144

    Google Scholar 

  17. Jones, N.: A theoretical study of the dynamic plastic behavior of beams and plates with finite-deflections. Int. J. Solids Struct. 7 (1971) 1007–1029

    Google Scholar 

  18. Maier, G.;Corradi, L.: Upper bounds on dynamic deformations of elastoplastic continua. Meccanica 1 (1974) 30–35

    Google Scholar 

  19. Jones, N.;Ahn, C. S.: Dynamic buckling of complete rigid-plastic spherical shells. Trans. ASME Ser. E: J. Appl. Mech. 41 (1974) 609–614

    Google Scholar 

  20. Jones, N.;Ahn, C. S.: Dynamic elastic and plastic buckling of complete spherical shells. Int. J. Solids Struct. 10 (1974) 1357–1374

    Google Scholar 

  21. Symonds, P. S.;Wierzbicki, T.: On an extremum principle for mode form solutions in plastic structural dynamics. Trans. ASME Ser. E: J. Appl. Mech. 42 (1975) 630–640

    Google Scholar 

  22. Sperling, A.;Partom, Y.: Numerical analysis of large elastic-plastic deformation of beam due to dynamic loading. Int. J. Solids Struct. 12 (1977) 865–876

    Google Scholar 

  23. Wierzbicki, T.: Impulsive loading of rigid viscoplastic plates. Int. J. Solids Struct. 3 (1967) 635–647

    Google Scholar 

  24. Calder, C. A.;Kelly, J. M.;Goldsmith, W.: Projectile impact on an infinite viscoplastic plate. Int. J. Solids Struct. 7 (1971) 1143–1152

    Google Scholar 

  25. Jones, N.: The dynamic plastic behavior of shells. In: Herrmann; Perrone (eds.) Dynamic Response of Structures, pp. 1–29. Oxford: Pergamon Press 1972

    Google Scholar 

  26. Wierzbicki, T.;Florence, A. L.: A theoretical and experimental investigation of impulsively loaded clamped circular viscoplastic plates. Int. J. Solids Struct. 13 (1977) 865–876

    Google Scholar 

  27. Wojno, W.: Perturbation solution for a rigid-viscoplastic spherical container. Arch. Mech. 31 (1979) 407–422

    Google Scholar 

  28. Wojewódzki, W.; Kwaśniewski, L.; Jemiolo, S.: Oscillations of elasto-viscoplastic spherical shell in the range of moderately large deflections (in Polish). Prace naukowe Politechniki Warszawskiej 114 (1992)

  29. Bukowski, R.;Wojewódzki, W.: Dynamic buckling of viscoplastic spherical shell. Int. J. Solids Struct. 20 (1984) 761–776

    Google Scholar 

  30. Perron, N.: On a simplified method for solving impulsively loaded structures of rate-sensitive materials. Trans. ASME Ser. E: J. Appl. Mech. 32 (1965) 489–492

    Google Scholar 

  31. Martin, J. B.: Time and displacement bound theorem for viscous and rigid-viscoplastic continua subjected to impulsive loading. In: Shaw, W. A. (ed.) Development in Theoretical and Applied Mechanics, Vol. 3 pp. 1–22. Oxford: Pergamon Press 1967

    Google Scholar 

  32. Symonds, P. S.;Chon, C. T.: Bonds for finite deflections of impulsively loaded structure with time dependent plastic behaviour. Int. J. Solids Struct. 11 (1975) 403–423

    Google Scholar 

  33. Symonds, P. S.: Approximation techniques for impulsively loaded structures of rate sensitive plastic behaviour. SIAM J. Appl. Math. 25 (1973) 462–473

    Google Scholar 

  34. Wojno, W.: Perturbation solution for viscoplastic beam under impulse loading. Arch. Mech. 33 (1981) 83–97

    Google Scholar 

  35. Wojno, W.;Wierzbicki, T.: On perturbation solutions for impulsively loaded viscoplastic structures. J. Appl. Math. and Physics (ZAMP) 30 (1979) 41–55

    Google Scholar 

  36. Kaliszky, S.: Dynamic plastic response of structures. In: Sawczuk (ed.) Plasticity Today, pp. 787–820. New York: Pergamon Press 1985

    Google Scholar 

  37. Schweizerhof, K.;Matzenmiller, A.;Maier, M.: Numerische Simulation des Schädigungsverhaltens von Faserverbundwerkstoffen. Report, CARMAT Project, CADFEM GmbH-BASF AG, Ludwishaften 1990

    Google Scholar 

  38. Schweizerhof, K.; Nilsson, L.; Hallquist, J. O.: Crashworthiness analysis in the automotive industry. Int. J. of Comp. Applications in Technol. (1991) 1–56

  39. Lee, J.-Y.;Symonds, P. S.: Extended energy approach to chaotic elasto-plastic response to impulsive loading. Int. J. Mech. Sci. 34 (1992) 139–157

    Google Scholar 

  40. Klosowski, P.; Woźnica, K.; Weichert, D.: Dynamic and rheological analysis of geometrically non-linear laminated plates and shells. Report of Research Fellowship, Co-operation in Sci. and Techn. with CEEC, Com. European Communities, 1993

  41. Ghosh, S.;Kikuchi, N.: Finite element formulation for the simulation of hot sheet metal forming processes. Int. J. Engng. Sci. 26 (1988) 143–161

    Google Scholar 

  42. Kolsky, H.;Rush, P.;Symonds, P. S.: Some experimental observations of anomalous response of fully clamped beams. Int. J. Impact Engng. 11 (1991) 445–456

    Google Scholar 

  43. Brown, S. B.;Kim, K. H.;Anand, L.: An internal variable constitutive model for hot working of metals. Int. J. Plasticity 5 (1989) 95–130

    Google Scholar 

  44. Revisin, B.;Bodner, S. R.: Experiments on the dynamic tensile strength of metal and plastics. Israel J. Technology 7 (1969) 485–493

    Google Scholar 

  45. Cambell, J. D.: The yield of mild steel under impact loading. J. Mech. Phys. Solids 3 (1954) 54–62

    Google Scholar 

  46. Szczepiński, W.: Plastic strain of spherical shells under dynamic loading by internal pressure. Arch. mech. 16 (1964) 1207–1214

    Google Scholar 

  47. Schmidt, R., Reddy, J. N.: A refined small strain moderate rotations theory of elastic anisotropic shells. Trans. ASME J. Appl. Mech. 55 (1988) 611–617

    Google Scholar 

  48. Palmerio, A. F.;Reddy, J. N., Schmidt, R.: On a moderate rotation theory of laminated anisotropic shells, art I, II. Int. J. Non-linear mech. 25 (1990) 687–714

    Google Scholar 

  49. Palmerio, A. F.;Reddy, J. N.: On a moderate rotation theory of laminated anisotropic shells: theory and finite element analysis. Report No. CCMS-88-17, Virginia Polytechnic Instiute and State University, Blacksburg, Virginia (1988)

    Google Scholar 

  50. Lemaitre, J.;Chaboche, J.-L.: Mécanique des matériaux solides. Paris: Dunod 1988

    Google Scholar 

  51. Chaboche, J.-L.: Sur les lois de comportement des matériaux sous solliciations monotonnes ou cycliques. Recherche Aérospatiale 5 (1983)

  52. Chaboche, J.-L.: Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plasticity 5 (1989) 247–302

    Google Scholar 

  53. Bodner, S. R.: Review of a unified elasto-viscoplastic theory. In: Miller, K. (ed.) Unified Constitutive Equations for Creep and Plasticity, pp. 273–301 New York: Elseviev 1987

    Google Scholar 

  54. Menallal, A.: Validation of structural computation codes in elasto-viscoplasticity. Int. J. Num. Meth. Eng. 29 (1990) 1109–1130

    Google Scholar 

  55. Turbat, A.: Extension des programmes par éléments finis au domaine thermo-élasto-visco-plastique. Report CETIM No. 102, 1982

  56. Kreja, I.; Schmidt, R.; Weichert, D.; Teyeb, O.: Geometrically nonlinear analysis of inelastic shell structure including ductil damage. Interim Research Report on the DFG-Research Project “Theory and Nonlinear FEM-Analysis of Elastic and Nonelastic Anisotropic Structures Including Material Damage,” Wuppertal/Lille 1994

  57. Teyeb, O. M. M.: Analyse géométriquement non lineaire des coques et plaques: application aux structures laminées. Thése de doctorat, Laboratoire de Mécanique de Lille, USTL, 1993

  58. Nosier, A.;Kapania, R. K.;Reddy, J. N.: Low-velocity impact response of laminated plates. Report DAALo3-90-G-1345, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 1992

    Google Scholar 

  59. Nazeer, A.: Axismmetric plane-strain vibrations of a thick-layered orthotropic cylindrical shell. J. Acoustical Soc. America 40 (1966) 1509–1516

    Google Scholar 

  60. Sivakumran, K. S.;Chia, C. Y.: Large-amplitude oscillations of unsymmetrically laminated anisotropic rectangular plates including shear, rotatory inertia, and transverse normal stress. Trans. ASME/J. Appl. Mech. 52 (1985) 536–542

    Google Scholar 

  61. Reddy, J. N.: Geometrically non-linear transient analysis of laminated composite plates. AIAA J. 21 (1983) 621–629

    Google Scholar 

  62. Reddy, J. N.;Chandrashekhara, K.: Geometrically non-linear transient analysis of laminated, doubly curved shells. Int. J. Non-Linear Mech. 20 (1985) 79–90

    Google Scholar 

  63. Liao, C.-L.;Reddy, J. N.: An incremental total lagrangian formulation for general anisotropic shell-type structures. Report No. VPI-E-87.22, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 1987

    Google Scholar 

  64. Sathyamoorthy, M.: Large amplitude elliptical plate vibrations with transverse shear and rotatory inertia effects. Trans. ASME/J. Mech. Design 103 (1981) 1–6

    Google Scholar 

  65. Klosowski, P.;Schmidt, R.: Geometrically non-linear transient analysis of laminated composite plates and shells. ZAMM 73 (1993) 903–906

    Google Scholar 

  66. Klosowski, P.;Schmidt, R.: Non-linear vibrations of composite laminated plates and shells under impulsive loading. Proc. XI Polish Con. Comp. Meth. Mech., Poland Kielce 1 (1993) 433–440

    Google Scholar 

  67. Klosowski, P.;Schmidt, R.: Large amplitude oscillation of laminated composite shells under time-dependent loading ZAMM 74 (1994) 138–140

    Google Scholar 

  68. Collatz, L.: The numerical treatment of differencial equations New York: Springer 1966

    Google Scholar 

  69. Richmyer, R. D.;Morton, K. W.: Difference method for initial-value problems. New York: Wiley and Sons 1967

    Google Scholar 

  70. Ben-Cheick, A.: Elastoviscoplasticité à température variable. Thèse de doctorat, Université Paris 6, 1987

  71. Klosowski, P.; Woźnica, K.; Weichert, D.: Vibration of elasto-viscoplastic truss element. (submitted)

  72. Milly, T. M.;Allen, D. H.: A comparative study of non-linear rate-dependent mechanical constitutive theories for crystalline solids at elevated temperatures. Rep. API-E-5-82, Virginia Polytechnic Inst. and State University, Blacksburg, Virginia, 1982

    Google Scholar 

  73. Eftis, J.;Abdel Kader, M. S.;Jones, D. I.: Comparisons between the modified Chaboche and Bodner-Partom viscoplastic constitutive theories at high temperature. Int. J. Plasticity 6 (1989) 1–27

    Google Scholar 

  74. Olschewski, J.;Sievert, R.;Bertram, A.: Comparative viscoplastic FE-calculations of a notched specimen under cyclic loadings. In: Bochler; Khan (eds.) Proc. of Plasticity' 91, pp. 397–400. New York: Elsevier 1991

    Google Scholar 

  75. Olschewski, J.;Sievert, R.;Bertram, A.: A comparison of the predictive capabilities of two unified constitutive models at elevated temperatures. In: Dessai, C.S. (ed.) Constitutive Laws for Engineering Materials. New York: ASME Press 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klosowski, P., Woźnica, K. & Weichert, D. Dynamics of elasto-viscoplastic plates and shells. Arch. Appl. Mech. 65, 326–345 (1995). https://doi.org/10.1007/BF00789224

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00789224

Key words

Navigation