Archive of Applied Mechanics

, Volume 64, Issue 4, pp 249–257 | Cite as

Direct determination of periodic solutions of mechanical dynamical systems

  • J. P. Meijaard
Originals
  • 24 Downloads

Summary

Methods for the direct determination of stationary and periodic solutions of systems whose behaviour is described by a set of ordinary differential equations, and the continuation of these solutions if a parameter is varied, are presented. The realization of these methods in a program for flexible multibody systems is discussed, which requires, besides the determination of the equations of motion, the determination of the linearized equations and the sensitivity of the equations with respect to parameter variations. The methods are applied to an elastic rotor with mass eccentricity and a slider-crank mechanism with a flexible connecting rod.

Keywords

Differential Equation Neural Network Complex System Ordinary Differential Equation Information Theory 

Direkte Bestimmung periodischer Lösungen mechanischer dynamischer Systeme

Übersicht

Verfahren zur direkten Bestimmung stationärer und periodischer Lösungen in Systemen, deren Verhalten durch ein System gewöhnlicher Differentialgleichungen beschrieben wird, und zur Fortsetzung dieser Lösungen wenn ein Parameter geändert wird, werden vorgelegt. Die Gestaltung dieser Verfahren in einem Programm für flexible Mehrkörpersysteme wird besprochen, was, nebst der Bestimmung der Bewegungsgleichungen, die Bestimmung der linearisierten Gleichungen und die Empfindlichkeit der Gleichungen gegen Parameteränderungen erfordert. Die Verfahren werden auf einen elastischen Rotor mit Massenunwucht und ein Kurbelgetriebe mit verformbarer Pleuelstange angewandt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cleghorn, W. L.;Fenton, R. G.;Tabarrok, B.: Steady-state vibrational response of high-speed flexible mechanisms. Mechanism Mach. Theory 19 (1984) 417–423Google Scholar
  2. 2.
    Fried, I.: Orthogonal trajectory accession to the nonlinear equilibrium curve. Comput. Methods Appl. Mech. Engng. 47 (1984) 283–297Google Scholar
  3. 3.
    Golub, G. H.;Van Loan, C. F.: Matrix computations. Baltimore MD: The Johns Hopkins University Press 1989Google Scholar
  4. 4.
    Guckenheimer, J.;Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. New York: Springer 1983Google Scholar
  5. 5.
    Haselgrove, C. B.: The solution of non-linear equations and of differential equations with two-point boudary conditions. Comput. J. 4 (1961) 255–259Google Scholar
  6. 6.
    Jonker, J. B.: A finite element dynamic analysis of spatial mechanisms with flexible links. Comput. Methods Appl. Mech. Engng. 76 (1989) 17–40Google Scholar
  7. 7.
    Meijaard, J. P.: Direct determination of periodic solutions of the dynamical equations of flexible mechanisms and manipulators. Int. J. Num. Methods Engng. 32 (1991) 1691–1710Google Scholar
  8. 8.
    Meijaard, J. P.: Applications of the singular value decomposition in dynamics. Comput. Methods Appl. Mech. Engng. 103 (1993) 161–173Google Scholar
  9. 9.
    Schiehlen, W. (ed.): Multibody systems handbook: Berlin: Springer 1990Google Scholar
  10. 10.
    Seydel, R.: Tutorial on continuation. Int. J. of Bifurcation and Chaos 1 (1991) 3–11Google Scholar
  11. 11.
    Song, J. O.;Haug, E. J.: Dynamic analysis of planar flexible mechanisms. Comput. Methods Appl. Mech. Engng. 24 (1980) 359–381Google Scholar
  12. 12.
    Stoer, J.: Einführung in die numerische Mathematik I. Berlin: Springer 1972Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • J. P. Meijaard
    • 1
  1. 1.Laboratory for Engineering MechanicsDelft University of TechnologyThe Netherlands

Personalised recommendations