Skip to main content
Log in

Combustion of large volumes of dispersed fuels and the evolution of their products in the free atmosphere

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Conclusions

The results of the experiments show the significant effect of the dimensions of the gas—drop system on the character of its combustion: in the range of clouds with a volume greater than 500 m3, it is possible to attain apparent flame velocities greater than 100 m/sec. Here, it was established that in large aerosol clouds of atomized hydrocarbon fuels with a similar disperse composition, the apparent velocity of the flame increases with an increase in the molecular weight of the fuel.

Comparison of the dynamics of ascent of the resulting vortex ring with the calculated data in [17] shows that the behavior of the combustion products of dispersed fuels in the free atmosphere can be classified as a case of free upward convection from an impulsive point source. The relation H(t)∼(Qit2)1/4 for this case is equivalent to the relation for the ascent of the products of a powerful explosion [14].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. A. I. Rozlovskii, Principles of Fire Safety in the Use of Combustible Gases and Vapors [in Russian], Khimiya, Moscow (1980).

    Google Scholar 

  2. B. Lewis (ed.), Combustion Processes [Russian translation], Fizmatgiz, Moscow (1961).

    Google Scholar 

  3. N. Kh. Kopyt, A. N. Matskov, et al., “Aerosol generator,” Inventor's Cert. No. 1072919 SSSR, MKI3 V 05 V 17/00, Byull. Izobret., 6 (1984).

  4. O. A. Isaev, Phase Transformations in Metastable Systems [in Russian], Sverdlovsk (1983).

  5. V. P. Skripov, Metastable Liquid [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  6. V. A. Grigor'ev and V. M. Zorin (eds.), Heat and Mass Transfer. Heat-Engineering Experiment (Handbook) [in Russian], Energoizdat, Moscow (1982).

    Google Scholar 

  7. B. I. Nigmatulin, K. I. Soplenkov, and V. N. Blinkov, Teplofiz. Vyz. Temp.,25, No. 4, 726 (1987).

    Google Scholar 

  8. N. F. Dubovik (ed.), Handbook of Hydrocarbon Fuels and Their Combustion Products [in Russian], Gostekhizdat, Moscow-Leningrad (1962).

    Google Scholar 

  9. A. A. Borisov, B. E. Gel'fand, et al., Inzh.-Fiz. Zh.,40, No. 1, 64 (1981).

    Google Scholar 

  10. S. N. Miroshnikov, Candidate's Dissertation, MFTI (1980).

  11. V. I. Makeev, Yu. A. Gostintsev, et al., Fiz. Goreniya Vzryva,19, No. 5, 16 (1983).

    Google Scholar 

  12. O. M. Todes, A. D. Gol'tsiker, and Ya. G. Gorbul'skii, Dokl. Akad. Nauk SSSR,205, No. 5, 1083 (1972).

    Google Scholar 

  13. A. A. Boni, M. Chapman, et al., Prog. Astronaut. Aeronaut.,58, 373 (1978).

    Google Scholar 

  14. A. T. Onufriev, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 3 (1967).

    Google Scholar 

  15. A. A. Lugovtsov, B. A. Lugovtsov, and V. P. Tarasov, Din. Sploshnoi Sredy, No. 3 (1960).

  16. A. I. Struchaev, V. A. Ershov, et al., Fiz. Aerodispersnykh Sist.,18 (1978).

  17. Yu. A. Gostintsev, L. A. Sukhanov, and A. F. Solodovnik, Dokl. Akad. Nauk SSSR,252, No. 2, 311 (1980).

    Google Scholar 

Download references

Authors

Additional information

Odessa. Translated from Fizika Goreniya i Vzryva, Vol. 25, No. 3, pp. 21–28, May–June, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopyt, N.K., Struchaev, A.I., Krasnoshchekov, Y.I. et al. Combustion of large volumes of dispersed fuels and the evolution of their products in the free atmosphere. Combust Explos Shock Waves 25, 279–285 (1989). https://doi.org/10.1007/BF00788797

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00788797

Keywords

Navigation